PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m624.
Published online 2008 April 4. doi:  10.1107/S1600536808008490
PMCID: PMC2961137

Diaqua­dimethano­lbis[4-(1H-tetra­zol-1-yl)benzoato]zinc(II) dihydrate

Abstract

In the title compound, [Zn(C8H5N4O2)2(CH3OH)2(H2O)2]·2H2O, the ZnII ion lies on an inversion centre and is coordinated by two O atoms from two 4-(tetra­zol-1-yl)benzoate ligands, two O atoms from two methanol mol­ecules and two O atoms from two water mol­ecules in a slightly distorted octa­hedral geometry. In addition, there are two uncoordinated water mol­ecules in the crystal structure. The crystal structure is stabilized by inter­molecular O—H(...)O hydrogen bonds.

Related literature

For related literature, see: Zou et al. (2005 [triangle]); Dinca et al. (2006 [triangle]); Li et al. (2007 [triangle]); Zhang & Du (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m624-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2O
  • M r = 579.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m624-efi1.jpg
  • a = 13.220 (3) Å
  • b = 7.1551 (14) Å
  • c = 12.636 (3) Å
  • β = 90.24 (3)°
  • V = 1195.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.810, T max = 0.844
  • 12254 measured reflections
  • 2746 independent reflections
  • 2359 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.076
  • S = 1.04
  • 2746 reflections
  • 188 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008490/at2552sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008490/at2552Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Tianjin, China (No. 07JCZDJC00500) for financial support.

supplementary crystallographic information

Comment

Coordination architectures formed from 1H-tetrazol and its derivatives have attracted wide attentions in recent years, due to not only their fascinating structures and topologies, but also their potential applications in luminescence, magnetism and gas storage (Dinca, et al., 2006; Li, et al., 2007). However, there are rare reports (Zou, et al., 2005) of the coordination systems using the benzoic acids with N-heterocycle as ligands. So we synthesized several coordination compounds by such ligands. And here we report the structure of title compound (I).

The structure of (I) consists of discrete neutral unit [Zn(C8H5N4O2)2(CH3OH)2(H2O)2], and two lattice water molecules (Fig. 1), atom Zn1 lies on an inversion centre and is coordinated by two O atoms from two 4-(tetrazol-1-yl) benzoate ligands, two O atoms from two methanol molecules and two O atoms from two water molecules in a distorted octahedral geometry.The metal ion of (I) is bonded to the carboxyl group of 4-(tetrazol-1-yl) benzoate, which is remarkably different from our previous reported compound that using the same ligand with N donor coordinating to metal ion (Zhang et al., 2007). The crystal stacking of (I) (Fig. 2) is stabilized by the intermolecular O—H···O hydrogen bonds (Table 2).

Experimental

A solution of Zn(NO3)2.6H2O (0.1 mmol) in water (5 ml) was added to a solution of 4-(tetrazol-1-yl) benzoic acid (38 mg, 0.2 mmol) and sodium hydroxide (8 mg, 0.2 mmol) in methanol (5 mL). The reaction mixture was stirred for 30 min and then filtered. Colourless crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation after two weeks [yield: 46%].

Refinement

H atoms of C were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C,N). The H atoms of water was located in Fourier difference map and refined without restraint.

Figures

Fig. 1.
The molecular structure of (I), with 30% probability displacement ellipsoids. [Symmetry code: (A) -x+1, -y, -z+2.]
Fig. 2.
A portion of the crystal stacking structure, showing the intermolecular O—H···O, hydrogen bonds as dashed lines.

Crystal data

[Zn(C8H5N4O2)2(CH4O)2(H2O)2]·2H2OF000 = 600
Mr = 579.84Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11248 reflections
a = 13.220 (3) Åθ = 3.1–27.6º
b = 7.1551 (14) ŵ = 1.10 mm1
c = 12.636 (3) ÅT = 293 (2) K
β = 90.24 (3)ºBlock, colourless
V = 1195.3 (4) Å30.20 × 0.18 × 0.16 mm
Z = 2

Data collection

Bruker P4 diffractometer2746 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −17→17
Tmin = 0.810, Tmax = 0.844k = −9→9
12254 measured reflectionsl = −16→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5826P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.29 e Å3
2746 reflectionsΔρmin = −0.23 e Å3
188 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0228 (12)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.00001.00000.02298 (11)
O10.63696 (9)0.0452 (2)0.92928 (10)0.0313 (3)
O20.73211 (10)0.1468 (2)1.06367 (10)0.0399 (4)
C20.97854 (12)0.0991 (2)0.77039 (14)0.0231 (4)
N41.06694 (11)0.0940 (2)0.70586 (12)0.0243 (3)
C50.80990 (13)0.1028 (2)0.89760 (14)0.0228 (4)
N31.06465 (12)0.1453 (3)0.60316 (13)0.0339 (4)
C40.90418 (13)0.1480 (3)0.93867 (14)0.0259 (4)
H40.91040.17931.00980.031*
N11.21854 (12)0.0669 (3)0.64661 (14)0.0342 (4)
C70.88492 (14)0.0580 (3)0.72624 (15)0.0282 (4)
H70.87860.02940.65470.034*
C30.98863 (14)0.1470 (3)0.87560 (15)0.0274 (4)
H31.05160.17820.90350.033*
C80.71954 (13)0.0989 (3)0.96960 (14)0.0256 (4)
C11.16184 (14)0.0462 (3)0.72993 (16)0.0291 (4)
H11.18400.00470.79580.035*
C60.80137 (14)0.0608 (3)0.79125 (15)0.0279 (4)
H60.73800.03390.76290.033*
N21.15560 (13)0.1290 (3)0.56869 (14)0.0375 (4)
O30.54347 (11)−0.2616 (2)1.06193 (13)0.0380 (4)
C90.63908 (16)−0.3252 (3)1.0949 (2)0.0470 (6)
H9A0.6907−0.25791.05780.071*
H9B0.6451−0.45631.07990.071*
H9C0.6467−0.30501.16960.071*
O2W0.43377 (14)0.4734 (2)0.16558 (13)0.0340 (3)
O1W0.54904 (11)0.14327 (19)1.13919 (10)0.0289 (3)
H1WA0.54710.07181.18980.043*
H2WA0.378 (2)0.457 (4)0.156 (2)0.053 (9)*
H2WB0.463 (2)0.382 (4)0.156 (2)0.061 (10)*
H1WB0.612 (2)0.155 (4)1.121 (2)0.058 (8)*
H3M0.5060 (19)−0.325 (4)1.088 (2)0.047 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01705 (16)0.02848 (18)0.02340 (17)0.00002 (12)−0.00056 (11)0.00133 (13)
O10.0173 (6)0.0487 (9)0.0279 (7)−0.0049 (6)0.0003 (5)0.0000 (6)
O20.0265 (7)0.0670 (11)0.0261 (7)−0.0095 (7)0.0019 (6)−0.0061 (7)
C20.0174 (9)0.0241 (9)0.0279 (9)−0.0001 (7)0.0021 (7)0.0030 (7)
N40.0191 (7)0.0275 (8)0.0261 (8)0.0008 (6)−0.0003 (6)0.0027 (7)
C50.0184 (8)0.0231 (9)0.0270 (9)−0.0014 (7)0.0000 (7)0.0016 (7)
N30.0277 (9)0.0455 (10)0.0284 (9)0.0043 (7)0.0021 (7)0.0072 (8)
C40.0240 (9)0.0310 (10)0.0227 (9)−0.0040 (7)−0.0023 (7)0.0004 (8)
N10.0239 (9)0.0384 (9)0.0403 (10)0.0029 (7)0.0040 (7)0.0031 (8)
C70.0244 (9)0.0352 (10)0.0249 (9)−0.0018 (8)−0.0025 (8)−0.0039 (8)
C30.0190 (9)0.0330 (10)0.0301 (10)−0.0040 (7)−0.0053 (7)0.0009 (8)
C80.0199 (9)0.0283 (10)0.0287 (10)−0.0013 (7)−0.0004 (7)0.0038 (8)
C10.0214 (9)0.0331 (11)0.0328 (10)0.0023 (7)−0.0020 (8)0.0010 (8)
C60.0179 (9)0.0362 (10)0.0294 (10)−0.0033 (7)−0.0039 (7)−0.0030 (8)
N20.0290 (9)0.0478 (11)0.0358 (10)0.0035 (8)0.0080 (7)0.0093 (8)
O30.0261 (7)0.0373 (9)0.0505 (9)0.0028 (7)−0.0007 (7)0.0194 (7)
C90.0323 (12)0.0468 (14)0.0620 (15)0.0093 (10)−0.0041 (11)0.0120 (12)
O2W0.0277 (8)0.0361 (9)0.0382 (8)−0.0020 (7)0.0031 (7)−0.0057 (7)
O1W0.0251 (7)0.0359 (8)0.0257 (7)0.0002 (6)0.0004 (6)0.0029 (6)

Geometric parameters (Å, °)

Zn1—O12.0483 (14)C4—H40.9300
Zn1—O1i2.0483 (14)N1—C11.304 (3)
Zn1—O32.1078 (15)N1—N21.361 (2)
Zn1—O3i2.1078 (15)C7—C61.379 (3)
Zn1—O1Wi2.1342 (14)C7—H70.9300
Zn1—O1W2.1342 (14)C3—H30.9300
O1—C81.263 (2)C1—H10.9300
O2—C81.247 (2)C6—H60.9300
C2—C31.379 (3)O3—C91.405 (2)
C2—C71.387 (2)O3—H3M0.75 (3)
C2—N41.428 (2)C9—H9A0.9600
N4—C11.334 (2)C9—H9B0.9600
N4—N31.349 (2)C9—H9C0.9600
C5—C61.381 (3)O2W—H2WA0.75 (3)
C5—C41.386 (2)O2W—H2WB0.77 (3)
C5—C81.505 (2)O1W—H1WA0.8200
N3—N21.286 (2)O1W—H1WB0.87 (3)
C4—C31.375 (3)
O1—Zn1—O1i180.00 (3)C6—C7—C2118.22 (17)
O1—Zn1—O393.56 (6)C6—C7—H7120.9
O1i—Zn1—O386.44 (6)C2—C7—H7120.9
O1—Zn1—O3i86.44 (6)C4—C3—C2119.00 (17)
O1i—Zn1—O3i93.56 (6)C4—C3—H3120.5
O3—Zn1—O3i180.0C2—C3—H3120.5
O1—Zn1—O1Wi88.98 (6)O2—C8—O1125.41 (17)
O1i—Zn1—O1Wi91.02 (6)O2—C8—C5117.92 (16)
O3—Zn1—O1Wi87.75 (6)O1—C8—C5116.66 (16)
O3i—Zn1—O1Wi92.25 (6)N1—C1—N4109.28 (17)
O1—Zn1—O1W91.02 (6)N1—C1—H1125.4
O1i—Zn1—O1W88.98 (6)N4—C1—H1125.4
O3—Zn1—O1W92.25 (6)C7—C6—C5121.35 (17)
O3i—Zn1—O1W87.75 (6)C7—C6—H6119.3
O1Wi—Zn1—O1W180.0C5—C6—H6119.3
C8—O1—Zn1129.52 (12)N3—N2—N1110.75 (16)
C3—C2—C7121.54 (17)C9—O3—Zn1129.90 (14)
C3—C2—N4118.74 (16)C9—O3—H3M105 (2)
C7—C2—N4119.72 (16)Zn1—O3—H3M122 (2)
C1—N4—N3107.84 (15)O3—C9—H9A109.5
C1—N4—C2130.34 (16)O3—C9—H9B109.5
N3—N4—C2121.81 (15)H9A—C9—H9B109.5
C6—C5—C4118.98 (17)O3—C9—H9C109.5
C6—C5—C8121.50 (16)H9A—C9—H9C109.5
C4—C5—C8119.52 (16)H9B—C9—H9C109.5
N2—N3—N4106.50 (15)H2WA—O2W—H2WB109 (3)
C3—C4—C5120.86 (17)Zn1—O1W—H1WA109.5
C3—C4—H4119.6Zn1—O1W—H1WB96.5 (17)
C5—C4—H4119.6H1WA—O1W—H1WB107.7
C1—N1—N2105.63 (15)
O1i—Zn1—O1—C873 (100)Zn1—O1—C8—C5174.81 (12)
O3—Zn1—O1—C8−78.56 (17)C6—C5—C8—O2−176.77 (19)
O3i—Zn1—O1—C8101.44 (17)C4—C5—C8—O23.7 (3)
O1Wi—Zn1—O1—C8−166.24 (17)C6—C5—C8—O13.9 (3)
O1W—Zn1—O1—C813.76 (17)C4—C5—C8—O1−175.56 (17)
C3—C2—N4—C133.9 (3)N2—N1—C1—N4−0.2 (2)
C7—C2—N4—C1−146.7 (2)N3—N4—C1—N10.4 (2)
C3—C2—N4—N3−144.73 (19)C2—N4—C1—N1−178.39 (18)
C7—C2—N4—N334.7 (3)C2—C7—C6—C5−0.2 (3)
C1—N4—N3—N2−0.4 (2)C4—C5—C6—C71.8 (3)
C2—N4—N3—N2178.53 (17)C8—C5—C6—C7−177.68 (18)
C6—C5—C4—C3−1.5 (3)N4—N3—N2—N10.2 (2)
C8—C5—C4—C3177.97 (17)C1—N1—N2—N30.0 (2)
C3—C2—C7—C6−1.8 (3)O1—Zn1—O3—C931.19 (19)
N4—C2—C7—C6178.77 (17)O1i—Zn1—O3—C9−148.81 (19)
C5—C4—C3—C2−0.4 (3)O3i—Zn1—O3—C9−165 (73)
C7—C2—C3—C42.1 (3)O1Wi—Zn1—O3—C9120.04 (19)
N4—C2—C3—C4−178.49 (17)O1W—Zn1—O3—C9−59.96 (19)
Zn1—O1—C8—O2−4.4 (3)

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wii0.821.972.759 (2)160
O2W—H2WB···O1Wiii0.77 (3)2.07 (3)2.831 (2)175 (3)
O3—H3M···O2Wiv0.75 (3)1.99 (3)2.726 (2)167 (3)

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x, y, z−1; (iv) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2552).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. (2006). J. Am. Chem. Soc.128, 16876–16883. [PubMed]
  • Li, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527–1529. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, S.-M. & Du, J.-L. (2007). Acta Cryst. E63, m3139.
  • Zou, R.-Q., Cai, L.-Z. & Guo, G.-C. (2005). J. Mol. Struct.737, 125–129.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography