PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o930.
Published online 2008 April 30. doi:  10.1107/S1600536808011240
PMCID: PMC2961136

5-Iodo-2,7-dimethyl-3-phenyl­sulfonyl-1-benzofuran

Abstract

The title compound, C16H13IO3S, was prepared by the oxidation of 5-iodo-2,7-dimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 76.31 (8)° with the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules, and between the benzene rings of neighbouring mol­ecules; the centroid–centroid distances within the stack are 3.700 (4) and 3.788 (4) Å. In addition, the crystal structure exhibits inter- and intra­molecular C—H(...)O inter­actions, and an I(...)O halogen bond with an I(...)O distance of 3.282 (2) Å and a nearly linear C—I(...)O angle of 165.69 (8)°.

Related literature

For the crystal structures of similar 3-phenyl­sulfonyl-1-benzofuran compounds, see: Choi et al. (2008a [triangle],b [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o930-scheme1.jpg

Experimental

Crystal data

  • C16H13IO3S
  • M r = 412.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o930-efi13.jpg
  • a = 8.1165 (5) Å
  • b = 14.0295 (9) Å
  • c = 13.2470 (8) Å
  • β = 90.320 (1)°
  • V = 1508.42 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.27 mm−1
  • T = 173 (2) K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.579, T max = 0.641
  • 9110 measured reflections
  • 3285 independent reflections
  • 3069 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.074
  • S = 0.99
  • 3285 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 1.13 e Å−3
  • Δρmin = −1.01 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011240/zl2112sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011240/zl2112Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing studies on the synthesis and structure of 3-phenyl-sulfonyl-1-benzofuran analogues, the crystal structure of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b) have been recently described in the literature. Herein we report the molecular and crystal structure of the title ompound, 5-iodo-2,7-dimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 76.31 (8)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by two different π—π interactions within each stack of molecules; one between the furan ring (Cg1) and an adjacent benzene ring (Cg2v) of a benzofuran unit {distance 3.700 (4) Å}, and a second between the benzene ring (Cg2) and an adjacent benzene ring (Cg2iii) of the benzofuran unit {distance 3.788 (4) Å}(Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by inter- and intramolecular C—H···O interactions (Table 1), and by a halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen atom of the S═O unit (Fig. 2; symmetry code as in Fig, 2).

Experimental

3-Chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 5-iodo-2,7-dimethyl 3-phenylsulfanyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2: 1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 431–432 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.41 (s, 3H), 2.80 (s, 3H), 7.42 (s, 1H), 7.50–7.32 (m, 3H), 7.98 (d, J = 7.32 Hz, 2H), 8.06 (s, 1H); EI—MS 412 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.75 Å from I and the largest hole is 0.69 Å from I.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
π—π interactions, C—H···O hydrogen bonds, and I···O halogen bond (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x - 1/2, -y + 3/2, ...

Crystal data

C16H13IO3SF000 = 808
Mr = 412.22Dx = 1.815 Mg m3
Monoclinic, P21/nMelting point = 431–432 K
Hall symbol: -P_2ynMo Kα radiation λ = 0.71073 Å
a = 8.1165 (5) ÅCell parameters from 6912 reflections
b = 14.0295 (9) Åθ = 2.9–28.3º
c = 13.2470 (8) ŵ = 2.27 mm1
β = 90.320 (1)ºT = 173 (2) K
V = 1508.42 (16) Å3Block, colorless
Z = 40.40 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer3285 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 173(2) Kθmin = 2.9º
[var phi] and ω scansh = −10→7
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)k = −17→16
Tmin = 0.579, Tmax = 0.641l = −16→16
9110 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027  w = 1/[σ2(Fo2) + (0.0428P)2 + 1.8205P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 0.99Δρmax = 1.13 e Å3
3285 reflectionsΔρmin = −1.01 e Å3
193 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0204 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.01644 (2)0.271298 (12)0.412327 (13)0.03036 (10)
S0.31859 (7)0.47908 (4)0.80435 (4)0.02106 (14)
O10.3994 (2)0.62669 (12)0.55765 (13)0.0216 (3)
O20.2767 (3)0.38039 (13)0.79316 (14)0.0304 (4)
O30.4628 (2)0.50442 (16)0.86163 (15)0.0343 (4)
C10.3367 (3)0.52624 (17)0.68298 (18)0.0196 (5)
C20.2699 (3)0.48622 (17)0.59100 (18)0.0192 (5)
C30.1833 (3)0.40340 (17)0.56413 (18)0.0216 (5)
H30.15300.35700.61280.026*
C40.1444 (3)0.39292 (18)0.46308 (19)0.0236 (5)
C50.1860 (3)0.46045 (18)0.39014 (19)0.0240 (5)
H50.15490.44970.32180.029*
C60.2718 (3)0.54330 (18)0.41501 (18)0.0224 (5)
C70.3120 (3)0.55133 (17)0.51657 (18)0.0204 (5)
C80.4119 (3)0.60993 (18)0.65900 (18)0.0216 (5)
C90.1490 (3)0.53904 (18)0.85741 (18)0.0240 (5)
C100.1754 (4)0.6275 (2)0.9019 (2)0.0381 (7)
H100.28250.65480.90330.046*
C110.0447 (5)0.6749 (3)0.9437 (3)0.0508 (9)
H110.06100.73550.97410.061*
C12−0.1097 (5)0.6348 (3)0.9418 (2)0.0497 (10)
H12−0.19960.66820.97070.060*
C13−0.1359 (4)0.5464 (3)0.8984 (2)0.0456 (9)
H13−0.24320.51930.89780.055*
C14−0.0047 (3)0.4970 (2)0.85537 (19)0.0311 (6)
H14−0.02070.43610.82550.037*
C150.3140 (4)0.6191 (2)0.3392 (2)0.0308 (6)
H15A0.23940.67350.34740.046*
H15B0.30210.59330.27080.046*
H15C0.42790.64010.35000.046*
C160.4982 (3)0.6852 (2)0.7172 (2)0.0284 (5)
H16A0.60320.70010.68460.043*
H16B0.51890.66260.78610.043*
H16C0.42950.74260.71930.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.02777 (13)0.02830 (13)0.03502 (14)−0.00635 (6)0.00123 (8)−0.00964 (7)
S0.0220 (3)0.0220 (3)0.0192 (3)0.0029 (2)0.0004 (2)0.0016 (2)
O10.0229 (8)0.0197 (8)0.0224 (8)−0.0016 (7)0.0032 (7)0.0006 (7)
O20.0432 (12)0.0204 (9)0.0275 (9)0.0044 (8)0.0045 (8)0.0035 (7)
O30.0264 (10)0.0488 (12)0.0277 (9)−0.0001 (9)−0.0064 (8)0.0021 (9)
C10.0192 (11)0.0205 (11)0.0190 (11)0.0006 (9)0.0015 (9)−0.0001 (9)
C20.0169 (10)0.0208 (11)0.0200 (11)0.0020 (9)0.0024 (8)−0.0003 (9)
C30.0208 (11)0.0198 (11)0.0243 (11)−0.0006 (9)0.0030 (9)−0.0005 (9)
C40.0196 (11)0.0228 (12)0.0285 (12)0.0002 (9)0.0019 (9)−0.0051 (10)
C50.0243 (12)0.0274 (12)0.0203 (11)0.0035 (10)−0.0015 (9)−0.0028 (10)
C60.0222 (12)0.0232 (12)0.0219 (11)0.0054 (9)0.0025 (9)0.0018 (10)
C70.0178 (11)0.0185 (11)0.0250 (11)0.0004 (8)0.0027 (9)−0.0012 (9)
C80.0212 (11)0.0213 (11)0.0222 (11)0.0010 (9)0.0028 (9)−0.0005 (9)
C90.0296 (13)0.0250 (12)0.0174 (10)0.0053 (10)0.0046 (10)0.0042 (9)
C100.0479 (18)0.0284 (14)0.0383 (15)−0.0016 (13)0.0175 (14)−0.0031 (12)
C110.073 (3)0.0323 (16)0.0474 (19)0.0140 (16)0.0297 (18)0.0001 (14)
C120.058 (2)0.059 (2)0.0323 (16)0.0347 (18)0.0188 (15)0.0125 (15)
C130.0245 (14)0.085 (3)0.0269 (14)0.0115 (15)0.0020 (11)0.0152 (16)
C140.0261 (13)0.0458 (16)0.0214 (12)0.0018 (12)−0.0038 (10)0.0030 (11)
C150.0378 (15)0.0302 (14)0.0245 (12)0.0014 (11)0.0019 (11)0.0068 (11)
C160.0288 (13)0.0264 (13)0.0299 (13)−0.0052 (11)0.0018 (10)−0.0049 (11)

Geometric parameters (Å, °)

I—O2i3.282 (2)C8—C161.481 (3)
I—C42.106 (3)C9—C141.380 (4)
S—O21.433 (2)C9—C101.390 (4)
S—O31.436 (2)C10—C111.371 (4)
S—C11.746 (2)C10—H100.9500
S—C91.762 (3)C11—C121.374 (6)
O1—C81.366 (3)C11—H110.9500
O1—C71.383 (3)C12—C131.383 (6)
C1—C81.362 (3)C12—H120.9500
C1—C21.444 (3)C13—C141.395 (4)
C2—C71.388 (3)C13—H130.9500
C2—C31.403 (3)C14—H140.9500
C3—C41.381 (3)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.396 (4)C15—H15C0.9800
C5—C61.394 (4)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.387 (3)C16—H16C0.9800
C6—C151.504 (3)
C4—I—O2i165.69 (8)O1—C8—C16114.9 (2)
O2—S—O3119.1 (1)C14—C9—C10121.8 (3)
O2—S—C1107.0 (1)C14—C9—S119.7 (2)
O3—S—C1108.7 (1)C10—C9—S118.5 (2)
O2—S—C9108.5 (1)C11—C10—C9119.1 (3)
O3—S—C9107.9 (1)C11—C10—H10120.4
C1—S—C9104.9 (1)C9—C10—H10120.4
C8—O1—C7106.9 (2)C10—C11—C12120.1 (3)
C8—C1—C2107.7 (2)C10—C11—H11120.0
C8—C1—S125.6 (2)C12—C11—H11120.0
C2—C1—S126.6 (2)C11—C12—C13120.9 (3)
C7—C2—C3119.3 (2)C11—C12—H12119.6
C7—C2—C1104.5 (2)C13—C12—H12119.6
C3—C2—C1136.1 (2)C12—C13—C14119.9 (3)
C4—C3—C2116.5 (2)C12—C13—H13120.0
C4—C3—H3121.8C14—C13—H13120.0
C2—C3—H3121.8C9—C14—C13118.2 (3)
C3—C4—C5122.9 (2)C9—C14—H14120.9
C3—C4—I120.4 (2)C13—C14—H14120.9
C5—C4—I116.7 (2)C6—C15—H15A109.5
C6—C5—C4121.7 (2)C6—C15—H15B109.5
C6—C5—H5119.2H15A—C15—H15B109.5
C4—C5—H5119.2C6—C15—H15C109.5
C7—C6—C5114.3 (2)H15A—C15—H15C109.5
C7—C6—C15122.5 (2)H15B—C15—H15C109.5
C5—C6—C15123.2 (2)C8—C16—H16A109.5
O1—C7—C2110.6 (2)C8—C16—H16B109.5
O1—C7—C6124.1 (2)H16A—C16—H16B109.5
C2—C7—C6125.3 (2)C8—C16—H16C109.5
C1—C8—O1110.3 (2)H16A—C16—H16C109.5
C1—C8—C16134.8 (2)H16B—C16—H16C109.5
O2—S—C1—C8−163.4 (2)C5—C6—C7—O1178.8 (2)
O3—S—C1—C8−33.6 (3)C15—C6—C7—O1−2.7 (4)
C9—S—C1—C881.5 (2)C5—C6—C7—C2−1.7 (4)
O2—S—C1—C219.2 (2)C15—C6—C7—C2176.8 (2)
O3—S—C1—C2149.0 (2)C2—C1—C8—O1−0.4 (3)
C9—S—C1—C2−95.8 (2)S—C1—C8—O1−178.2 (2)
C8—C1—C2—C70.1 (3)C2—C1—C8—C16178.1 (3)
S—C1—C2—C7177.8 (2)S—C1—C8—C160.3 (4)
C8—C1—C2—C3178.8 (3)C7—O1—C8—C10.5 (3)
S—C1—C2—C3−3.4 (4)C7—O1—C8—C16−178.3 (2)
C7—C2—C3—C4−0.4 (3)O2—S—C9—C14−17.4 (2)
C1—C2—C3—C4−179.1 (3)O3—S—C9—C14−147.6 (2)
C2—C3—C4—C5−0.7 (4)C1—S—C9—C1496.7 (2)
C2—C3—C4—I179.5 (2)O2—S—C9—C10161.6 (2)
C3—C4—C5—C60.7 (4)O3—S—C9—C1031.4 (2)
I—C4—C5—C6−179.5 (2)C1—S—C9—C10−84.4 (2)
C4—C5—C6—C70.5 (4)C14—C9—C10—C11−0.9 (5)
C4—C5—C6—C15−178.0 (2)S—C9—C10—C11−179.8 (3)
C8—O1—C7—C2−0.5 (3)C9—C10—C11—C120.3 (5)
C8—O1—C7—C6179.0 (2)C10—C11—C12—C130.3 (5)
C3—C2—C7—O1−178.7 (2)C11—C12—C13—C14−0.3 (5)
C1—C2—C7—O10.3 (3)C10—C9—C14—C130.8 (4)
C3—C2—C7—C61.7 (4)S—C9—C14—C13179.8 (2)
C1—C2—C7—C6−179.3 (2)C12—C13—C14—C9−0.3 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O1ii0.952.593.382 (4)141
C13—H13···O3iii0.952.443.342 (4)159
C14—H14···O20.952.582.931 (4)103
C16—H16B···O30.982.483.191 (4)129

Symmetry codes: (ii) x−1/2, −y+3/2, z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2112).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography