PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m662–m663.
Published online 2008 April 16. doi:  10.1107/S1600536808009227
PMCID: PMC2961133

catena-Poly[[tetra­aqua­(μ-4,4′-bipyridine-κ2 N:N′)zinc(II)] fumarate tetra­hydrate]

Abstract

In the title compound, {[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2O}n, the ZnII atom is coordinated by two N atoms from two μ-4,4′-bipyridine ligands and four water mol­ecules in a distorted octa­hedral geometry. The coordination unit is extended through the Zn—N bond, leading to a one-dimensional cationic chain. A twofold rotation axis passes through the Zn atom and along the axis of the 4,4′-bipyridine ligand. Each uncoordinated water mol­ecule acts as both hydrogen-bond donor and acceptor. A three-dimensional network is constructed through hydrogen bonds involving water mol­ecules and fumarate dianions.

Related literature

For related literature, see: Lu et al. (2006 [triangle]); Moulton & Zaworotko (2001 [triangle]); Nordell et al. (2003 [triangle]); Wagner et al. (2002 [triangle]); Wen et al. (2005 [triangle]); Yaghi et al. (1997 [triangle]); Zaworotko (2001 [triangle]); Zhou et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m662-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H8N2)(H2O)4](C4H2O4)·4H2O
  • M r = 479.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m662-efi9.jpg
  • a = 17.094 (5) Å
  • b = 11.394 (3) Å
  • c = 13.082 (6) Å
  • β = 126.652 (2)°
  • V = 2044.3 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 293 (2) K
  • 0.39 × 0.28 × 0.26 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.626, T max = 0.712
  • 7538 measured reflections
  • 1907 independent reflections
  • 1724 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.112
  • S = 1.09
  • 1907 reflections
  • 134 parameters
  • H-atom parameters constrained
  • Δρmax = 0.98 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009227/hy2122sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009227/hy2122Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Research Foundation of Shaanxi Provincial Education Office of China (grant No. 06JK155), the Natural Science Foundation of Shaanxi Province of China (grant No. 2006B08) and the Sustentatio Program for New-Century Elitists of the Ministry of Education, China (NCET-06-0891).

supplementary crystallographic information

Comment

Coordination polymer networks represent a result of applying supramolecular concepts to the design of new functional solids and are well exemplified by compounds in which transition metal centers (nodes) are connected by linear bidentate organic ligands (spacer groups) such as 4,4'-bipyridine (Lu et al., 2006; Nordell et al., 2003; Wagner et al., 2002; Wen et al., 2005; Yaghi et al., 1997; Zhou et al., 2007). These supramolecular structures are of interest as they provide opportunity for generating open framework compounds with controllable cavity sizes and they therefore have the potential to exhibit porosity and/or encapsulate guest molecules (Moulton & Zaworotko, 2001; Zaworotko, 2001).

The title compound consists of one [Zn(C10H8N2) (H2O)4]2+ cation, one fumarate dianion and four lattice water molecules (Fig. 1). Each ZnII atom is six-coordinated in an octahedral geometry with four O atoms of four water molecules in the equatorial plane and two N atoms from two µ-4,4'-bipyridine ligands in the axial sites, resulting a one-dimensional cationic chain along the b-axis. The two pyridyl rings of 4,4'-bipyridine present a torsion angle of 10.0 (2)°.

Each lattice water molecule acts as both hydrogen-bond donor and acceptor. In the crystal structure, the cationic chains are arranged parallel to the bc plane with the fumarate dianions and lattice water molecules located between the sheets composed of the chains. A three-dimensional supramolecular network is formed by hydrogen-bonding interactions involving the water molecules and fumarate dianions (Fig. 2).

Experimental

A mixture of Zn(NO3)2.6H2O (0.030 g, 0.1 mmol), 4,4'-bipyridine (0.016 g, 0.1 mmol), mercaptosuccinic acid (0.015 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave and heated at 433 K for 72 h under autogenous pressure. After slowly cooling to room temperature, yellow block-like crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture by filtration.

Refinement

H atoms of the water molecules were located in a difference Fourier map and fixed in the refinements with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.
The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) 1/2 - x, 3/2 - y, 1 - z; (iii) x, -1 + y, z; (iv) x, 1 + y, z; (v) 1/2 - x, 1/2 - y, 1 - z; (vi) 1/2 - x, ...
Fig. 2.
A view of the three-dimensional network in the title compound, viewed down the a axis.

Crystal data

[Zn(C10H8N2)(H2O)4](C4H2O4)·4H2OF000 = 1000
Mr = 479.74Dx = 1.559 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3920 reflections
a = 17.094 (5) Åθ = 2.3–28.2º
b = 11.394 (3) ŵ = 1.27 mm1
c = 13.082 (6) ÅT = 293 (2) K
β = 126.652 (2)ºBlock, colorless
V = 2044.3 (12) Å30.39 × 0.28 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1907 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.051
T = 293(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −20→20
Tmin = 0.626, Tmax = 0.712k = −13→13
7538 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0789P)2 + 0.2551P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.99 e Å3
1907 reflectionsΔρmin = −0.86 e Å3
134 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.27603 (3)0.75000.02705 (18)
O10.41826 (14)0.27340 (13)0.54278 (17)0.0358 (4)
H1W0.38140.21720.52590.054*
H2W0.38640.33280.50410.054*
O20.36784 (13)0.27446 (13)0.72328 (17)0.0358 (4)
H3W0.32320.31200.66100.054*
H4W0.36210.27060.78120.054*
O30.21520 (12)0.40439 (15)0.53213 (15)0.0396 (4)
H5W0.20700.46580.55810.059*
H6W0.23310.41670.48720.059*
O40.29343 (13)0.53785 (16)0.89255 (16)0.0454 (5)
H7W0.30410.46670.89330.068*
H8W0.26350.56460.81910.068*
O50.19945 (14)0.59997 (17)0.63613 (17)0.0437 (4)
O60.17990 (18)0.79445 (17)0.6206 (2)0.0499 (5)
N10.50000.4644 (2)0.75000.0305 (6)
N20.50001.0888 (2)0.75000.0281 (6)
C10.47776 (19)0.5262 (2)0.8170 (2)0.0375 (6)
H1A0.46130.48540.86330.045*
C20.47816 (19)0.6469 (2)0.8206 (2)0.0352 (5)
H2A0.46380.68560.87020.042*
C30.50000.7114 (3)0.75000.0288 (7)
C40.50000.8413 (3)0.75000.0286 (7)
C50.5361 (2)0.9065 (2)0.6958 (3)0.0378 (6)
H50.56120.86810.65840.045*
C60.53453 (18)1.0269 (2)0.6974 (2)0.0358 (5)
H60.55871.06770.66010.043*
C70.20633 (18)0.6996 (2)0.6001 (2)0.0330 (5)
C80.24700 (18)0.7029 (2)0.5263 (2)0.0355 (5)
H80.26990.63280.51670.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0401 (3)0.0197 (3)0.0348 (3)0.0000.0296 (2)0.000
O10.0500 (10)0.0311 (10)0.0364 (9)−0.0015 (6)0.0313 (8)0.0004 (6)
O20.0455 (10)0.0390 (11)0.0419 (10)0.0077 (7)0.0362 (8)0.0091 (7)
O30.0540 (10)0.0334 (9)0.0408 (9)−0.0009 (7)0.0334 (8)−0.0006 (7)
O40.0691 (12)0.0338 (10)0.0394 (10)0.0009 (8)0.0357 (9)0.0017 (7)
O50.0722 (12)0.0362 (10)0.0497 (10)−0.0015 (9)0.0509 (10)0.0025 (8)
O60.0879 (15)0.0365 (10)0.0668 (13)−0.0006 (9)0.0685 (13)0.0000 (9)
N10.0468 (15)0.0214 (13)0.0374 (14)0.0000.0327 (13)0.000
N20.0357 (13)0.0213 (13)0.0346 (14)0.0000.0250 (12)0.000
C10.0596 (15)0.0256 (12)0.0471 (14)−0.0003 (11)0.0424 (13)0.0025 (11)
C20.0574 (14)0.0249 (11)0.0435 (13)0.0034 (10)0.0410 (12)−0.0010 (10)
C30.0341 (16)0.0228 (17)0.0319 (16)0.0000.0211 (14)0.000
C40.0354 (15)0.0247 (16)0.0308 (15)0.0000.0224 (13)0.000
C50.0595 (15)0.0249 (12)0.0547 (15)0.0010 (11)0.0480 (13)−0.0029 (11)
C60.0528 (13)0.0271 (12)0.0489 (14)0.0000 (10)0.0418 (12)0.0019 (10)
C70.0462 (13)0.0339 (12)0.0312 (11)−0.0023 (10)0.0297 (11)−0.0014 (10)
C80.0528 (14)0.0326 (11)0.0401 (13)0.0016 (10)0.0381 (12)−0.0007 (10)

Geometric parameters (Å, °)

Zn1—O2i2.0697 (18)N2—C61.344 (3)
Zn1—O22.0697 (18)N2—C6i1.344 (3)
Zn1—N2ii2.133 (3)N2—Zn1iii2.133 (3)
Zn1—N12.146 (3)C1—C21.376 (3)
Zn1—O1i2.186 (2)C1—H1A0.9300
Zn1—O12.186 (2)C2—C31.394 (3)
O1—H1W0.8300C2—H2A0.9300
O1—H2W0.8259C3—C2i1.394 (3)
O2—H3W0.8283C3—C41.480 (5)
O2—H4W0.8210C4—C51.400 (3)
O3—H5W0.8263C4—C5i1.400 (3)
O3—H6W0.8200C5—C61.372 (4)
O4—H7W0.8299C5—H50.9300
O4—H8W0.8315C6—H60.9300
O5—C71.261 (3)C7—C81.490 (3)
O6—C71.261 (3)C8—C8iv1.312 (5)
N1—C1i1.345 (3)C8—H80.9300
N1—C11.345 (3)
O2i—Zn1—O2179.01 (9)C6—N2—Zn1iii121.70 (14)
O2i—Zn1—N2ii89.50 (4)C6i—N2—Zn1iii121.70 (14)
O2—Zn1—N2ii89.50 (4)N1—C1—C2123.2 (2)
O2i—Zn1—N190.50 (4)N1—C1—H1A118.4
O2—Zn1—N190.50 (4)C2—C1—H1A118.4
N2ii—Zn1—N1179.999 (1)C1—C2—C3120.1 (2)
O2i—Zn1—O1i88.01 (7)C1—C2—H2A119.9
O2—Zn1—O1i91.97 (7)C3—C2—H2A119.9
N2ii—Zn1—O1i89.21 (4)C2i—C3—C2116.4 (3)
N1—Zn1—O1i90.79 (4)C2i—C3—C4121.79 (14)
O2i—Zn1—O191.98 (7)C2—C3—C4121.79 (14)
O2—Zn1—O188.01 (7)C5—C4—C5i115.9 (3)
N2ii—Zn1—O189.21 (4)C5—C4—C3122.05 (15)
N1—Zn1—O190.79 (4)C5i—C4—C3122.05 (15)
O1i—Zn1—O1178.43 (8)C6—C5—C4120.3 (2)
Zn1—O1—H1W99.4C6—C5—H5119.9
Zn1—O1—H2W116.6C4—C5—H5119.9
H1W—O1—H2W110.6N2—C6—C5123.5 (2)
Zn1—O2—H3W115.7N2—C6—H6118.3
Zn1—O2—H4W124.3C5—C6—H6118.3
H3W—O2—H4W112.8O6—C7—O5124.5 (2)
H5W—O3—H6W112.2O6—C7—C8118.8 (2)
H7W—O4—H8W110.5O5—C7—C8116.7 (2)
C1i—N1—C1116.8 (3)C8iv—C8—C7124.9 (3)
C1i—N1—Zn1121.60 (14)C8iv—C8—H8117.5
C1—N1—Zn1121.60 (14)C7—C8—H8117.5
C6—N2—C6i116.6 (3)
O2i—Zn1—N1—C1i45.69 (14)C1—C2—C3—C4179.23 (18)
O2—Zn1—N1—C1i−134.31 (14)C2i—C3—C4—C5−10.02 (17)
O1i—Zn1—N1—C1i133.71 (14)C2—C3—C4—C5169.98 (17)
O1—Zn1—N1—C1i−46.29 (14)C2i—C3—C4—C5i169.97 (17)
O2i—Zn1—N1—C1−134.31 (14)C2—C3—C4—C5i−10.02 (17)
O2—Zn1—N1—C145.69 (14)C5i—C4—C5—C6−0.19 (18)
O1i—Zn1—N1—C1−46.29 (15)C3—C4—C5—C6179.81 (18)
O1—Zn1—N1—C1133.70 (15)C6i—N2—C6—C5−0.21 (19)
C1i—N1—C1—C2−0.83 (19)Zn1iii—N2—C6—C5179.80 (19)
Zn1—N1—C1—C2179.17 (19)C4—C5—C6—N20.4 (4)
N1—C1—C2—C31.6 (4)O6—C7—C8—C8iv−3.9 (5)
C1—C2—C3—C2i−0.77 (18)O5—C7—C8—C8iv174.9 (3)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x, y−1, z; (iii) x, y+1, z; (iv) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1W···O3v0.831.932.757 (2)173
O1—H2W···O4vi0.832.012.835 (3)172
O2—H3W···O30.831.912.732 (2)172
O2—H4W···O6vii0.821.832.623 (3)162
O3—H5W···O50.831.882.707 (3)173
O3—H6W···O4vi0.822.102.911 (3)172
O4—H7W···O6vii0.832.002.832 (3)175
O4—H8W···O50.831.992.811 (3)169

Symmetry codes: (v) −x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z−1/2; (vii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2122).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. E62, m3036–m3038.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wagner, B. D., McManus, G. J., Moulton, B. & Zaworotko, M. J. (2002). Chem. Commun. pp. 2176–2177. [PubMed]
  • Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem.44, 7161–7170. [PubMed]
  • Yaghi, O. M., Li, H.-L. & Groy, T. L. (1997). Inorg. Chem.36, 4292–4293. [PubMed]
  • Zaworotko, M. J. (2001). Chem. Commun. pp. 1–9.
  • Zhou, Y., Yao, J.-N., Liu, W.-S. & Yu, K.-B. (2007). Anal. Sci.23, x245–x246.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography