PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m633–m634.
Published online 2008 April 10. doi:  10.1107/S1600536808008982
PMCID: PMC2961129

(3,5-Dichloro­salicylaldehyde thio­semi­carbazonato-κ3 S,N 1,O)(N,N′-dimethyl­formamide-κO)copper(II) dimethyl­formamide solvate

Abstract

In the title compound, [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO, the CuII atom is coordinated in a slightly distorted square-planar geometry by an O, an S and an N atom from the tridentate ligand 3,5-dichloro­salicylaldehyde thio­semi­carb­azonate ligand and one O atom from dimethyl­formamide. At the same time, the Cu atom is in contact with S and Cl atoms from another two complexes [Cu(...)S and Cu(...)Cl = 2.9791 (2) and 3.3800 (3) Å, respectively], thereby forming a [4 + 2] coordination geometry. The crystal structure exhibits N—H(...)O and N—H(...)N hydrogen bonds.

Related literature

For studies of thio­semicarbazone complexes containing amino acids, see: Garcia-Orozco et al. (2002 [triangle]); Seena et al. (2007 [triangle]); Valdes-Martinez et al. (1995 [triangle]); Singh et al. (1997 [triangle]); Shen et al. (1997 [triangle]); Zimmer et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m633-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NO
  • M r = 471.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m633-efi1.jpg
  • a = 9.4979 (10) Å
  • b = 9.8057 (12) Å
  • c = 21.744 (2) Å
  • β = 94.263 (2)°
  • V = 2019.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.47 mm−1
  • T = 298 (2) K
  • 0.49 × 0.47 × 0.24 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.532, T max = 0.719
  • 9869 measured reflections
  • 3558 independent reflections
  • 2587 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.098
  • S = 1.06
  • 3558 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008982/om2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008982/om2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

supplementary crystallographic information

Comment

As a special kind of Schiff base, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties (Zimmer, et al., 1991). In addition, salicylaldehyde thiosemicarbazone and its substituent analogs as well as their copper complexes has been synthesized. The N—S donor also have theoretical interest, as they are capable of furnishing an environment of controlled geometry and ligand field strength.

In the title compound there is a DMF molecule coordinated through O, in addition to one N, one O and one S atom from the tridentate ligand 3,5-dichlorosalicylaldehyde thiosemicarbazone forming a slightly distorted planar square geometry (Fig. 1). In the unit cell, above and below the distorted square plane are Cl and S atoms at a long distance forming a "4 + 2" geometry. The weak interaction length of S–Cu is 2.9791 (2) Å. This bond distance are in the range of upper values for a long coordination distance (2.5–3.0 Å) in Cu(II) compounds. The length of Cl–Cu is 3.3800 (3) Å (Fig. 2). All of these facts can be seen as the result of the Jahn-Teller effect (Garcia-Orozco et al., 2002). A three-dimensional network is formed through these Cl–Cu, S–Cu contacts, N–H···N and N–H···O hydrogen bonds (Fig.3).

Experimental

An EtOH solution (15 ml) of 3,5-dichlorosalicylaldehyde (5 mmol) was added dropwise to the solution (15 ml) of thiosemicarbazide (5 mmol) and 0.75 ml acetic anhydride with stirring at ca 70°C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH solution. Then a mixture of the ligand (0.5 mmol) and copper nitrate (0.5 mmol) in EtOH (35 ml) was stirred at ca 65° C for 2 h to give the desired complex. The Cu complex was dissolved in DMF, and ether slowly diffused into the DMF solution to afford almost quantitatively green crystals of the mononuclear complex at ambient temperature after several days.

Figures

Fig. 1.
The asymmetric unit showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted for clarity.
Fig. 2.
The interactions of Cl···Cu and S···Cu in the asymmetric unit one-dimensional chains.
Fig. 3.
A view down the b axis, broken line showing short Cl–Cu and S···Cu contacts and hydrogen bonds.

Crystal data

[Cu(C8H5Cl2N3OS)(C3H7NO)]·C3H7NOF000 = 964
Mr = 471.84Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 9.4979 (10) ÅCell parameters from 3442 reflections
b = 9.8057 (12) Åθ = 2.3–26.8º
c = 21.744 (2) ŵ = 1.47 mm1
β = 94.263 (2)ºT = 298 (2) K
V = 2019.5 (4) Å3Block, green
Z = 40.49 × 0.47 × 0.24 mm

Data collection

Bruker SMART 1000 diffractometer3558 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→10
Tmin = 0.532, Tmax = 0.719k = −9→11
9869 measured reflectionsl = −23→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098  w = 1/[σ2(Fo2) + (0.0377P)2 + 1.6178P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3558 reflectionsΔρmax = 0.31 e Å3
235 parametersΔρmin = −0.50 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.54152 (4)0.31930 (4)0.51062 (2)0.04237 (15)
Cl10.29920 (11)−0.05605 (11)0.41172 (6)0.0706 (3)
Cl20.69572 (16)−0.09500 (13)0.24825 (6)0.0928 (4)
N10.7172 (3)0.3290 (3)0.46944 (12)0.0353 (6)
N20.8232 (3)0.4197 (3)0.48940 (14)0.0433 (7)
N30.8875 (3)0.5886 (3)0.55631 (15)0.0592 (9)
H3A0.96660.59380.53960.071*
H3B0.87100.64180.58640.071*
N40.1645 (3)0.2314 (4)0.58339 (19)0.0736 (11)
N50.3114 (4)0.6470 (4)0.24057 (17)0.0673 (10)
O10.4724 (2)0.1664 (2)0.46316 (13)0.0515 (6)
O20.3799 (2)0.3059 (3)0.56320 (12)0.0536 (7)
O30.4168 (4)0.7162 (4)0.15577 (16)0.0890 (10)
S10.63125 (9)0.49051 (9)0.57083 (4)0.0431 (2)
C10.7899 (3)0.4974 (3)0.53551 (15)0.0386 (8)
C20.7456 (3)0.2575 (3)0.42245 (17)0.0427 (8)
H20.83090.27510.40550.051*
C30.6572 (3)0.1521 (3)0.39345 (17)0.0430 (8)
C40.5275 (4)0.1113 (3)0.41651 (18)0.0440 (9)
C50.4564 (4)0.0012 (3)0.38446 (19)0.0496 (10)
C60.5066 (5)−0.0603 (4)0.3345 (2)0.0604 (11)
H60.4566−0.13170.31500.072*
C70.6330 (5)−0.0162 (4)0.31267 (18)0.0579 (10)
C80.7069 (4)0.0878 (4)0.34189 (18)0.0517 (10)
H80.79160.11630.32720.062*
C90.2784 (4)0.2276 (4)0.55256 (19)0.0568 (10)
H90.28310.16320.52140.068*
C100.1465 (5)0.3332 (6)0.6303 (3)0.1007 (19)
H10A0.22700.39270.63340.151*
H10B0.13770.28900.66920.151*
H10C0.06290.38540.61950.151*
C110.0480 (5)0.1379 (6)0.5678 (3)0.118 (2)
H11A−0.03300.18850.55170.178*
H11B0.02520.08960.60420.178*
H11C0.07500.07400.53740.178*
C120.3156 (6)0.7130 (5)0.1874 (2)0.0765 (14)
H120.23510.76070.17310.092*
C130.4330 (6)0.5683 (5)0.2633 (3)0.1003 (18)
H13A0.41520.47320.25560.151*
H13B0.45080.58310.30680.151*
H13C0.51390.59630.24250.151*
C140.1882 (5)0.6465 (6)0.2757 (2)0.0926 (16)
H14A0.11490.70010.25470.139*
H14B0.21210.68470.31580.139*
H14C0.15570.55460.28000.139*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0313 (2)0.0425 (3)0.0537 (3)−0.00725 (18)0.00661 (18)0.0006 (2)
Cl10.0498 (6)0.0584 (6)0.1019 (9)−0.0229 (5)−0.0066 (6)0.0054 (6)
Cl20.1295 (12)0.0781 (8)0.0717 (8)−0.0265 (8)0.0131 (8)−0.0339 (7)
N10.0274 (14)0.0357 (15)0.0427 (16)−0.0085 (11)0.0012 (12)−0.0040 (13)
N20.0286 (14)0.0462 (17)0.0556 (19)−0.0114 (12)0.0064 (13)−0.0158 (15)
N30.0365 (17)0.072 (2)0.071 (2)−0.0200 (16)0.0127 (15)−0.0359 (18)
N40.039 (2)0.089 (3)0.094 (3)−0.0100 (18)0.0143 (19)0.029 (2)
N50.077 (3)0.068 (2)0.057 (2)−0.009 (2)0.0072 (19)0.0059 (19)
O10.0362 (13)0.0408 (14)0.0782 (19)−0.0120 (11)0.0087 (12)−0.0043 (13)
O20.0386 (14)0.0559 (16)0.0681 (18)−0.0111 (12)0.0152 (12)0.0063 (13)
O30.098 (3)0.101 (3)0.067 (2)−0.024 (2)−0.0003 (19)0.0309 (19)
S10.0349 (5)0.0519 (5)0.0431 (5)−0.0045 (4)0.0068 (4)−0.0034 (4)
C10.0312 (17)0.044 (2)0.0401 (19)−0.0040 (15)−0.0008 (15)−0.0022 (16)
C20.0309 (18)0.044 (2)0.054 (2)−0.0099 (15)0.0033 (16)−0.0054 (18)
C30.0384 (19)0.0362 (19)0.054 (2)−0.0046 (15)−0.0019 (16)−0.0013 (17)
C40.0380 (19)0.0337 (19)0.059 (2)−0.0007 (15)−0.0046 (17)0.0041 (17)
C50.044 (2)0.037 (2)0.066 (3)−0.0097 (16)−0.0119 (19)0.0091 (19)
C60.070 (3)0.039 (2)0.068 (3)−0.011 (2)−0.021 (2)−0.004 (2)
C70.074 (3)0.047 (2)0.051 (2)−0.008 (2)−0.007 (2)−0.0089 (19)
C80.053 (2)0.047 (2)0.055 (2)−0.0087 (18)0.0024 (19)−0.0049 (19)
C90.045 (2)0.063 (3)0.063 (3)−0.004 (2)0.008 (2)0.013 (2)
C100.072 (3)0.134 (5)0.102 (4)0.014 (3)0.045 (3)0.024 (4)
C110.048 (3)0.141 (5)0.167 (6)−0.033 (3)0.011 (3)0.042 (5)
C120.089 (4)0.066 (3)0.072 (3)−0.015 (3)−0.010 (3)0.013 (3)
C130.118 (5)0.099 (4)0.087 (4)0.023 (3)0.029 (3)0.041 (3)
C140.083 (4)0.119 (4)0.077 (3)−0.017 (3)0.012 (3)−0.007 (3)

Geometric parameters (Å, °)

Cu1—O11.909 (2)C2—H20.9300
Cu1—N11.954 (3)C3—C81.398 (5)
Cu1—O21.985 (2)C3—C41.421 (5)
Cu1—S12.2567 (10)C4—C51.427 (5)
Cl1—C51.740 (4)C5—C61.359 (6)
Cl2—C71.743 (4)C6—C71.393 (6)
N1—C21.284 (4)C6—H60.9300
N1—N21.388 (3)C7—C81.367 (5)
N2—C11.316 (4)C8—H80.9300
N3—C11.342 (4)C9—H90.9300
N3—H3A0.8600C10—H10A0.9600
N3—H3B0.8600C10—H10B0.9600
N4—C91.315 (5)C10—H10C0.9600
N4—C101.446 (6)C11—H11A0.9600
N4—C111.458 (6)C11—H11B0.9600
N5—C121.328 (6)C11—H11C0.9600
N5—C141.444 (6)C12—H120.9300
N5—C131.446 (6)C13—H13A0.9600
O1—C41.294 (4)C13—H13B0.9600
O2—C91.241 (4)C13—H13C0.9600
O3—C121.223 (6)C14—H14A0.9600
S1—C11.743 (3)C14—H14B0.9600
C2—C31.447 (4)C14—H14C0.9600
O1—Cu1—N193.55 (11)C5—C6—H6120.1
O1—Cu1—O290.55 (11)C7—C6—H6120.1
N1—Cu1—O2172.04 (11)C8—C7—C6119.9 (4)
O1—Cu1—S1176.26 (8)C8—C7—Cl2120.7 (3)
N1—Cu1—S186.04 (8)C6—C7—Cl2119.4 (3)
O2—Cu1—S189.43 (8)C7—C8—C3121.1 (4)
C2—N1—N2114.1 (3)C7—C8—H8119.4
C2—N1—Cu1125.1 (2)C3—C8—H8119.4
N2—N1—Cu1120.8 (2)O2—C9—N4123.0 (4)
C1—N2—N1113.5 (3)O2—C9—H9118.5
C1—N3—H3A120.0N4—C9—H9118.5
C1—N3—H3B120.0N4—C10—H10A109.5
H3A—N3—H3B120.0N4—C10—H10B109.5
C9—N4—C10121.6 (4)H10A—C10—H10B109.5
C9—N4—C11120.2 (5)N4—C10—H10C109.5
C10—N4—C11118.0 (4)H10A—C10—H10C109.5
C12—N5—C14122.7 (4)H10B—C10—H10C109.5
C12—N5—C13118.8 (4)N4—C11—H11A109.5
C14—N5—C13118.4 (4)N4—C11—H11B109.5
C4—O1—Cu1127.5 (2)H11A—C11—H11B109.5
C9—O2—Cu1123.8 (3)N4—C11—H11C109.5
C1—S1—Cu194.29 (11)H11A—C11—H11C109.5
N2—C1—N3116.3 (3)H11B—C11—H11C109.5
N2—C1—S1125.3 (2)O3—C12—N5125.3 (5)
N3—C1—S1118.4 (3)O3—C12—H12117.3
N1—C2—C3126.0 (3)N5—C12—H12117.3
N1—C2—H2117.0N5—C13—H13A109.5
C3—C2—H2117.0N5—C13—H13B109.5
C8—C3—C4120.6 (3)H13A—C13—H13B109.5
C8—C3—C2116.9 (3)N5—C13—H13C109.5
C4—C3—C2122.5 (3)H13A—C13—H13C109.5
O1—C4—C3124.8 (3)H13B—C13—H13C109.5
O1—C4—C5119.6 (3)N5—C14—H14A109.5
C3—C4—C5115.6 (3)N5—C14—H14B109.5
C6—C5—C4123.0 (4)H14A—C14—H14B109.5
C6—C5—Cl1119.3 (3)N5—C14—H14C109.5
C4—C5—Cl1117.7 (3)H14A—C14—H14C109.5
C5—C6—C7119.8 (3)H14B—C14—H14C109.5
O1—Cu1—N1—C27.1 (3)N1—C2—C3—C4−2.9 (6)
O2—Cu1—N1—C2127.9 (7)Cu1—O1—C4—C33.3 (5)
S1—Cu1—N1—C2−176.6 (3)Cu1—O1—C4—C5−176.6 (2)
O1—Cu1—N1—N2−174.1 (2)C8—C3—C4—O1−178.8 (3)
O2—Cu1—N1—N2−53.3 (9)C2—C3—C4—O13.1 (5)
S1—Cu1—N1—N22.2 (2)C8—C3—C4—C51.2 (5)
C2—N1—N2—C1176.6 (3)C2—C3—C4—C5−176.9 (3)
Cu1—N1—N2—C1−2.3 (4)O1—C4—C5—C6179.0 (3)
N1—Cu1—O1—C4−7.1 (3)C3—C4—C5—C6−1.0 (5)
O2—Cu1—O1—C4179.7 (3)O1—C4—C5—Cl1−1.6 (4)
S1—Cu1—O1—C4−90.6 (13)C3—C4—C5—Cl1178.5 (3)
O1—Cu1—O2—C9−7.4 (3)C4—C5—C6—C70.1 (6)
N1—Cu1—O2—C9−128.4 (7)Cl1—C5—C6—C7−179.4 (3)
S1—Cu1—O2—C9176.3 (3)C5—C6—C7—C80.7 (6)
O1—Cu1—S1—C182.5 (12)C5—C6—C7—Cl2−179.5 (3)
N1—Cu1—S1—C1−1.24 (14)C6—C7—C8—C3−0.5 (6)
O2—Cu1—S1—C1172.22 (14)Cl2—C7—C8—C3179.7 (3)
N1—N2—C1—N3−179.1 (3)C4—C3—C8—C7−0.5 (6)
N1—N2—C1—S10.9 (4)C2—C3—C8—C7177.7 (3)
Cu1—S1—C1—N20.6 (3)Cu1—O2—C9—N4−171.5 (3)
Cu1—S1—C1—N3−179.4 (3)C10—N4—C9—O23.2 (7)
N2—N1—C2—C3177.6 (3)C11—N4—C9—O2179.0 (4)
Cu1—N1—C2—C3−3.5 (5)C14—N5—C12—O3−179.7 (5)
N1—C2—C3—C8178.9 (3)C13—N5—C12—O3−1.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.992 (4)170
N3—H3B···O3ii0.862.082.886 (4)157

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2219).

References

  • Bruker (2007). SAINT andSMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramirez-Rosales, D. & Zamorano-Ulloa, R. (2002). J. Mol. Struct.604, 57–64.
  • Seena, E. B., Maliyeckal, R. & Kurup, P. (2007). Polyhedron, 26, 829–, 36.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477–1482.
  • Singh, K., Long, J. R. & Stavropoulos, P. (1997). J. Am. Chem. Soc.119, 2942–2943.
  • Valdes-Martinez, J., Toscano, R. A. & Ramirez-Ortiz, J. (1995). Polyhedron, 14, 579–583.
  • Zimmer, M., Schulte, G., Luo, X.-L. & Crabtree, R. H. (1991). Angew. Chem. Int. Ed. Engl.30, 193–194.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography