PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m659.
Published online 2008 April 10. doi:  10.1107/S1600536808008957
PMCID: PMC2961121

Bis(μ-disulfur dinitrido)bis­[diphenyl­tin(IV)]

Abstract

The title compound, [Sn2(C6H5)4(N2S2)2], exists as a centrosymmetric binuclear dimer with the SnIV centres in distorted trigonal bipyramidal geometry and a central Sn2N2 core.

Related literature

For related literature, see: Aucott et al. (2002 [triangle], 2003 [triangle]); Bates et al. (1986 [triangle]); Chivers et al. (1986 [triangle]); Jones et al. (1985a [triangle],b [triangle], 1986 [triangle], 1987 [triangle], 1988 [triangle]); Kelly & Woollins (1986 [triangle]); Read et al. (2007 [triangle]); Slawin & Woollins (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m659-scheme1.jpg

Experimental

Crystal data

  • [Sn2(C6H5)4(N2S2)2]
  • M r = 730.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m659-efi1.jpg
  • a = 8.9235 (6) Å
  • b = 9.2285 (9) Å
  • c = 9.5881 (8) Å
  • α = 63.809 (2)°
  • β = 67.309 (2)°
  • γ = 70.471 (2)°
  • V = 640.72 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.30 mm−1
  • T = 93 (2) K
  • 0.20 × 0.03 × 0.03 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku 2004 [triangle]) T min = 0.923, T max = 0.941
  • 4110 measured reflections
  • 2267 independent reflections
  • 2110 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.099
  • S = 1.14
  • 2267 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −1.19 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008957/bt2692sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008957/bt2692Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The disulfurdinitride dianion is unknown in simple salts but can be isolated in metal complexes (Kelly and Woollins 1986, Jones et al. 1985a,b; Bates et al. 1986, Read et al. 2007) which may be protonated at the metal coordinated nitrogen (Jones et al. 1986, 1988) and we have previously commented on the structural consequences of this protonation (Jones et al. 1987). Recently, we developed a new route to disulfurdinitrido complexes from Bu2SnS2N2 (Aucott et al. 2002) and examined the metallation of the IrS2N2 and CoS2N2 rings using the AuPR3 cation as a species which is isolobal with a proton (Aucott et al. 2003, Slawin and Woollins 2006).

The structure of the title compound contains tin centres in distorted trigonal bipyramidal geometry and a central Sn2N2 ring (Figure 1). The binuclaear dimer is disposed about a centre of symmetry. The central core (excluding the phenyl rings) is planar with a mean deviation of 0.01 Å and a maximum deviation of 0.025 Å for N(1). The geometry is very similar to that of [n-Bu2SnS2N2]2 (Aucott et al. 2002). Comparison of the S—N bond lengths with platinum phosphine substituted complexes containing the S2N2 group reveals that the S—N bond lengths have a different motif to the PMe2Ph complex (Jones et al 1988) and one of the published PPh3 complexes (Chivers et al. 1986), but are comparable with most others systems containing the disulfurdinitrido anion (Jones et al. 1985a, Bates et al 1986).

Experimental

Ammonia gas (400 ml) was condensed into a dry-ice/acetone cooled Schlenk flask.[S4N3]Cl (18.47 g, 0.019 moles) was then added, forming a dark red solution. After stirring for 30 minutes, Ph2SnCl2 (1.68 g, 4.88 mmoles) was added, and the mixture stirred at 195 K for 4 h, before removal of the lower cooling bath, allowing NH3(l) reflux, and eventually evaporation overnight. The solid products were transferred to a Sohxlet apparatus, containing dry, degassed petroleum ether (140 ml) and cycled for 4 h, by which point the extracts appeared almost colourless. The lower flask was then placed under N2(g) at 250 K for 12 h, yielding bright yellow-orange crystals of Ph2SnS2N2, collected by filtration under N2. Yield: 0.092 g, 5.15%. IR Spectrum (KBr Pellet, cm-1): 3063 (m), 2963 (m), 1428 (versus), 1070 (s), 1024 (s), 899 (s), 729 (s), 694 (s), 636(s), 440 (s) and 382 (s), 1H NMR: δH 7.56–7.53 (4H, m, Ph) and 7.40–7.37 (6H, m, Ph), Mass Spectrum: EI m/z (%): 366.05 (Ph2SnS2N2, 5), 288.99 (PhSnS2N2, 2), 257.01 (PhSnSN2, 2), 197.01 (PhSn, 68), 77.06 (Ph, 25) and 63.96 (S2, 8), Melting Point: 411–13 K.

Refinement

All H atoms were included in calculated positions (C—H distance 0.95Å) and were refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, and aryl H atoms). The highest peak in the difference map is 0.95 Å from atom S(2) and the deepest hole is 0.96 Å from Sn(1)

Figures

Fig. 1.
The structure of title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry operator for generating equivalent atoms: (A) 1-x, 1-y, 1-z.

Crystal data

[Sn2(C6H5)4(N2S2)2]Z = 1
Mr = 730.06F000 = 356
Triclinic, P1Dx = 1.892 Mg m3
a = 8.9235 (6) ÅMo Kα radiation λ = 0.71073 Å
b = 9.2285 (9) ÅCell parameters from 2584 reflections
c = 9.5881 (8) Åθ = 2.5–28.3º
α = 63.809 (2)ºµ = 2.30 mm1
β = 67.309 (2)ºT = 93 (2) K
γ = 70.471 (2)ºPrism, yellow
V = 640.72 (9) Å30.20 × 0.03 × 0.03 mm

Data collection

Rigaku Mercury diffractometer2267 independent reflections
Radiation source: rotating anode2110 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.046
Detector resolution: 0.83 pixels mm-1θmax = 25.1º
T = 93(2) Kθmin = 2.5º
ω and [var phi] scansh = −9→10
Absorption correction: multi-scan(CrystalClear; Rigaku 2004)k = −7→11
Tmin = 0.923, Tmax = 0.941l = −8→11
4110 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2267 reflectionsΔρmax = 0.85 e Å3
155 parametersΔρmin = −1.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.42885 (3)0.54581 (3)0.68014 (3)0.01479 (16)
N10.6474 (5)0.4511 (4)0.5243 (4)0.0163 (8)
S10.81765 (14)0.40140 (14)0.55466 (14)0.0202 (3)
N20.8196 (5)0.4231 (5)0.7071 (5)0.0229 (9)
S20.64354 (15)0.49589 (15)0.82590 (15)0.0237 (3)
C10.3401 (5)0.8035 (5)0.6353 (5)0.0158 (9)
C20.2544 (6)0.9079 (5)0.5220 (6)0.0238 (11)
H2A0.23610.86580.45690.029*
C30.1945 (6)1.0741 (6)0.5022 (7)0.0288 (12)
H3A0.13521.14410.42460.035*
C40.2214 (6)1.1370 (6)0.5952 (7)0.0274 (12)
H4A0.18201.25030.58110.033*
C50.3050 (7)1.0347 (6)0.7075 (7)0.0301 (13)
H5A0.32271.07750.77250.036*
C60.3644 (6)0.8701 (6)0.7283 (6)0.0251 (11)
H6A0.42260.80130.80710.030*
C70.2886 (6)0.3648 (5)0.8626 (6)0.0176 (10)
C80.3637 (6)0.2265 (6)0.9698 (6)0.0234 (11)
H8A0.47600.21480.96280.028*
C90.2755 (7)0.1059 (6)1.0865 (6)0.0351 (13)
H9A0.32650.01301.16120.042*
C100.1130 (7)0.1206 (7)1.0945 (7)0.0346 (13)
H10A0.05400.03591.17250.042*
C110.0361 (7)0.2576 (7)0.9900 (7)0.0360 (14)
H11A−0.07650.26970.99760.043*
C120.1259 (6)0.3773 (6)0.8739 (6)0.0241 (11)
H12A0.07420.47050.80000.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0162 (2)0.0132 (2)0.0155 (2)−0.00201 (15)−0.00536 (16)−0.00553 (16)
N10.0150 (19)0.0190 (19)0.018 (2)−0.0018 (15)−0.0066 (16)−0.0089 (16)
S10.0152 (6)0.0246 (6)0.0244 (7)−0.0011 (5)−0.0084 (5)−0.0115 (5)
N20.022 (2)0.026 (2)0.024 (2)−0.0046 (17)−0.0108 (18)−0.0087 (18)
S20.0237 (7)0.0309 (7)0.0229 (7)−0.0028 (5)−0.0107 (5)−0.0135 (6)
C10.015 (2)0.014 (2)0.017 (2)−0.0048 (17)−0.0007 (19)−0.0066 (18)
C20.032 (3)0.020 (2)0.020 (3)−0.005 (2)−0.008 (2)−0.008 (2)
C30.029 (3)0.021 (3)0.034 (3)0.002 (2)−0.014 (2)−0.008 (2)
C40.030 (3)0.014 (2)0.035 (3)−0.005 (2)−0.007 (2)−0.007 (2)
C50.034 (3)0.030 (3)0.038 (3)−0.005 (2)−0.012 (3)−0.021 (3)
C60.026 (3)0.022 (3)0.028 (3)−0.001 (2)−0.009 (2)−0.011 (2)
C70.022 (3)0.015 (2)0.017 (2)−0.0024 (18)−0.0050 (19)−0.0074 (19)
C80.024 (3)0.023 (3)0.021 (3)−0.005 (2)−0.007 (2)−0.005 (2)
C90.049 (4)0.025 (3)0.020 (3)−0.009 (2)−0.010 (3)0.003 (2)
C100.038 (3)0.037 (3)0.025 (3)−0.018 (3)−0.006 (3)−0.002 (2)
C110.032 (3)0.046 (3)0.023 (3)−0.018 (3)0.002 (2)−0.007 (3)
C120.025 (3)0.023 (2)0.018 (3)−0.002 (2)−0.006 (2)−0.004 (2)

Geometric parameters (Å, °)

Sn1—C72.132 (5)C4—H4A0.9500
Sn1—N12.137 (4)C5—C61.380 (7)
Sn1—C12.138 (4)C5—H5A0.9500
Sn1—N1i2.296 (3)C6—H6A0.9500
Sn1—S22.5967 (12)C7—C121.382 (7)
N1—S11.536 (4)C7—C81.392 (6)
N1—Sn1i2.296 (3)C8—C91.385 (7)
S1—N21.567 (4)C8—H8A0.9500
N2—S21.675 (4)C9—C101.385 (8)
C1—C21.385 (6)C9—H9A0.9500
C1—C61.394 (6)C10—C111.381 (8)
C2—C31.396 (6)C10—H10A0.9500
C2—H2A0.9500C11—C121.385 (7)
C3—C41.379 (7)C11—H11A0.9500
C3—H3A0.9500C12—H12A0.9500
C4—C51.364 (8)
C7—Sn1—N1114.01 (15)C5—C4—H4A120.3
C7—Sn1—C1122.65 (16)C3—C4—H4A120.3
N1—Sn1—C1122.73 (15)C4—C5—C6121.0 (5)
C7—Sn1—N1i93.55 (15)C4—C5—H5A119.5
N1—Sn1—N1i72.82 (15)C6—C5—H5A119.5
C1—Sn1—N1i95.25 (15)C5—C6—C1120.9 (5)
C7—Sn1—S298.61 (12)C5—C6—H6A119.6
N1—Sn1—S280.65 (9)C1—C6—H6A119.6
C1—Sn1—S297.87 (12)C12—C7—C8118.6 (4)
N1i—Sn1—S2153.42 (10)C12—C7—Sn1121.8 (3)
S1—N1—Sn1121.6 (2)C8—C7—Sn1119.5 (3)
S1—N1—Sn1i131.2 (2)C9—C8—C7120.3 (5)
Sn1—N1—Sn1i107.18 (15)C9—C8—H8A119.9
N1—S1—N2115.8 (2)C7—C8—H8A119.9
S1—N2—S2120.4 (2)C8—C9—C10120.0 (5)
N2—S2—Sn1101.63 (14)C8—C9—H9A120.0
C2—C1—C6117.8 (4)C10—C9—H9A120.0
C2—C1—Sn1123.6 (3)C11—C10—C9120.5 (5)
C6—C1—Sn1118.6 (3)C11—C10—H10A119.8
C1—C2—C3120.9 (4)C9—C10—H10A119.8
C1—C2—H2A119.6C10—C11—C12118.8 (5)
C3—C2—H2A119.6C10—C11—H11A120.6
C4—C3—C2120.1 (5)C12—C11—H11A120.6
C4—C3—H3A120.0C7—C12—C11121.8 (4)
C2—C3—H3A120.0C7—C12—H12A119.1
C5—C4—C3119.4 (5)C11—C12—H12A119.1
C7—Sn1—N1—S1−96.1 (3)C6—C1—C2—C3−0.1 (7)
C1—Sn1—N1—S192.6 (3)Sn1—C1—C2—C3177.8 (4)
N1i—Sn1—N1—S1177.8 (3)C1—C2—C3—C40.5 (8)
S2—Sn1—N1—S1−0.7 (2)C2—C3—C4—C5−0.8 (8)
C7—Sn1—N1—Sn1i86.17 (18)C3—C4—C5—C60.6 (8)
C1—Sn1—N1—Sn1i−85.12 (19)C4—C5—C6—C1−0.2 (8)
N1i—Sn1—N1—Sn1i0.001 (2)C2—C1—C6—C5−0.1 (7)
S2—Sn1—N1—Sn1i−178.51 (14)Sn1—C1—C6—C5−178.0 (4)
Sn1—N1—S1—N20.6 (3)N1—Sn1—C7—C12−120.4 (4)
Sn1i—N1—S1—N2177.8 (2)C1—Sn1—C7—C1250.9 (4)
N1—S1—N2—S20.2 (4)N1i—Sn1—C7—C12−47.6 (4)
S1—N2—S2—Sn1−0.6 (3)S2—Sn1—C7—C12156.1 (3)
C7—Sn1—S2—N2113.77 (18)N1—Sn1—C7—C857.0 (4)
N1—Sn1—S2—N20.68 (16)C1—Sn1—C7—C8−131.7 (4)
C1—Sn1—S2—N2−121.35 (18)N1i—Sn1—C7—C8129.7 (4)
N1i—Sn1—S2—N2−2.5 (3)S2—Sn1—C7—C8−26.6 (4)
C7—Sn1—C1—C2−92.6 (4)C12—C7—C8—C9−1.0 (7)
N1—Sn1—C1—C277.9 (4)Sn1—C7—C8—C9−178.5 (4)
N1i—Sn1—C1—C25.0 (4)C7—C8—C9—C101.6 (8)
S2—Sn1—C1—C2161.8 (4)C8—C9—C10—C11−2.1 (9)
C7—Sn1—C1—C685.2 (4)C9—C10—C11—C122.0 (9)
N1—Sn1—C1—C6−104.3 (4)C8—C7—C12—C111.0 (7)
N1i—Sn1—C1—C6−177.2 (4)Sn1—C7—C12—C11178.4 (4)
S2—Sn1—C1—C6−20.4 (4)C10—C11—C12—C7−1.5 (8)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2692).

References

  • Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem.27, 1466–1469.
  • Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem.80, 1481–1487.
  • Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367–2370.
  • Chivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116, 145–151.
  • Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711–713.
  • Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325–1326.
  • Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947–1950.
  • Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803–807.
  • Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907–914.
  • Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607–632.
  • Read, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751–m752.
  • Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658–m1659.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography