PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o882.
Published online 2008 April 23. doi:  10.1107/S1600536808010544
PMCID: PMC2961116

5,6-Dichloro-2-(2-fluoro­phen­yl)iso­indoline-1,3-dione

Abstract

The crystal structure of the title compound, C14H6Cl2FNO2, exhibits C—H(...)π and π–π inter­actions, which generate C(3) chains in the [100] direction. The π–π inter­action occurs between the aromatic rings of isoindoline units, with a centroid–centroid distance of 3.672 Å and an inter­planar separation of 3.528 Å. The isoindoline unit is planar and inclined at an angle of 58.63 (18)° to the substituent benzene ring. The F atom is disordered over two positions, with refined occupancies of 0.669 (3) and 0.331 (3).

Related literature

For general background, see: Hall et al. (1987 [triangle]); Abdel-Hafez (2004 [triangle]); Sena et al. (2007 [triangle]). For related literature, see: Loudon (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o882-scheme1.jpg

Experimental

Crystal data

  • C14H6Cl2FNO2
  • M r = 310.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o882-efi5.jpg
  • a = 8.0078 (3) Å
  • b = 27.3570 (9) Å
  • c = 11.5563 (5) Å
  • V = 2531.63 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 296 K
  • 0.76 × 0.50 × 0.20 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.703, T max = 0.907
  • 31181 measured reflections
  • 2384 independent reflections
  • 1956 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.03
  • 2384 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010544/bt2693sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010544/bt2693Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Phthalimide derivatives have various biological activities (Hall et al., 1987; 1987; Abdel-Hafez, 2004; Sena et al. 2007). In view of the importance of the N-arylphthalimides, we herein report the results of title compound 5,6-dichloro-2-(2-fluorophenyl)isoindoline-1,3-dione, (I).

The molecule of (I) is built up from a 5,6-dichlorophthalimide unit connected to a o-fluorophenyl group through an nitrogen atom (Fig. 1). The isoindoline ring (atoms N1/C1–C8) is almost planar the largest deviation from the mean plane being 0.027 (2) Å for atom C1. The dihedral angle between the fluorophenyl ring and the mean plane of the isoindoline part is 58.63 (18)°. In (I), the crystal packing is stabilized by C6—H6···π (Table 1) interactions. The C1—N1 and C8—N1 bonds are 1.406 (2) and 1.394 (2)Å, respectively. These C—N bond lengths are shorter than C—N single bond (C—N = 1.47 Å; Loudon, 2002). This reflects both the sp2 hybridization of the adjacent carbon and the overlap of unshared electrons on nitrogen with π-electron system of carbonyl groups (Fig. 3). The π–π interaction occurs between the aromatic rings (C2–C7) of isoindoline moieties at (x; y; z) and (1 - x; 1 - y; 1 - z) sites with the centroid-centroid distance of 3.672 Å and an interplanar separation of 3.528 Å.

Experimental

A mixture of 4,5-dichlorophthalic acid (1.175 g, 0.005 mol) and 2-fluoroaniline (0.56 g, 0.005 mol) in DMF (1.5 ml) was heated at boiling temperature 15 min. The reaction mixture added in 50 ml e thanol (95%) and crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of this mixture at room temperature (yield 80%).

Refinement

The F atom is disordered over two ortho positions with refined occupancies of 0.669 (3) and 0.331 (3). H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the higher occupied of the disordered sites is shown.
Fig. 2.
A partial packing diagram of (I), showing the formation of C(3) chain and π–π interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) 1 - x,1 - y,1 - z; (ii) 1/2 + x, y, 3/2 - z; ...
Fig. 3.
The sp2 hybridization of the adjacent carbon and the overlap of unshared electrons on nitrogen with π-electron system of carbonyl groups.

Crystal data

C14H6Cl2FNO2F000 = 1248
Mr = 310.11Dx = 1.622 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31181 reflections
a = 8.0078 (3) Åθ = 1.5–26.2º
b = 27.3570 (9) ŵ = 0.52 mm1
c = 11.5563 (5) ÅT = 296 K
V = 2531.63 (17) Å3Prism, colorless
Z = 80.76 × 0.50 × 0.20 mm

Data collection

Stoe IPDSII diffractometer2384 independent reflections
Monochromator: plane graphite1956 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.063
T = 296 Kθmax = 25.6º
ω scan rotation methodθmin = 1.5º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −9→9
Tmin = 0.703, Tmax = 0.907k = −33→33
31181 measured reflectionsl = −14→14

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031  w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3058P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.15 e Å3
2384 reflectionsΔρmin = −0.17 e Å3
192 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.28581 (19)0.61572 (6)0.53527 (14)0.0525 (4)
C20.30531 (19)0.56310 (6)0.56377 (13)0.0503 (4)
C30.2424 (2)0.52248 (6)0.50902 (14)0.0548 (4)
H30.17610.52540.44330.066*
C40.2809 (2)0.47693 (6)0.55490 (15)0.0554 (4)
C50.3825 (2)0.47286 (6)0.65266 (15)0.0578 (4)
C60.4455 (2)0.51427 (7)0.70638 (15)0.0585 (4)
H60.51330.51180.77150.070*
C70.40453 (19)0.55905 (6)0.66043 (14)0.0516 (4)
C80.4518 (2)0.60897 (7)0.69910 (14)0.0569 (4)
C90.3879 (2)0.69277 (6)0.62605 (15)0.0557 (4)
C100.3223 (3)0.71816 (7)0.71829 (17)0.0702 (5)
C110.3314 (3)0.76849 (8)0.7209 (2)0.0850 (6)
H110.28700.78570.78310.102*
C120.4067 (3)0.79318 (8)0.6309 (2)0.0867 (7)
H120.41260.82710.63260.104*
C130.4725 (3)0.76831 (8)0.5395 (2)0.0867 (7)
H130.52300.78510.47900.104*
C140.4637 (2)0.71824 (7)0.53769 (17)0.0687 (5)
N10.37841 (17)0.64082 (5)0.61972 (11)0.0540 (3)
O10.20978 (16)0.63434 (4)0.45785 (10)0.0670 (3)
O20.53535 (19)0.62065 (5)0.78115 (12)0.0813 (4)
Cl10.20110 (7)0.425557 (17)0.48901 (4)0.07471 (19)
Cl20.43176 (8)0.416515 (19)0.70844 (5)0.0847 (2)
F10.5355 (3)0.69169 (7)0.45401 (16)0.0918 (7)0.669 (3)
F20.2785 (5)0.68818 (15)0.8105 (3)0.0846 (14)0.331 (3)
H100.27210.70190.78120.102*0.669 (3)
H140.50770.70270.47240.102*0.331 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0502 (9)0.0555 (9)0.0519 (8)0.0034 (7)−0.0010 (7)0.0013 (7)
C20.0466 (8)0.0536 (9)0.0508 (8)0.0033 (7)0.0030 (7)0.0024 (7)
C30.0548 (9)0.0580 (9)0.0517 (9)0.0044 (7)−0.0005 (7)0.0001 (7)
C40.0535 (9)0.0547 (9)0.0579 (9)0.0009 (7)0.0110 (8)−0.0015 (7)
C50.0549 (9)0.0571 (10)0.0613 (9)0.0070 (7)0.0107 (8)0.0102 (8)
C60.0530 (9)0.0664 (11)0.0559 (9)0.0022 (8)−0.0015 (7)0.0100 (8)
C70.0451 (8)0.0571 (9)0.0527 (8)0.0007 (7)0.0012 (7)0.0051 (7)
C80.0490 (9)0.0633 (11)0.0583 (9)−0.0074 (8)−0.0035 (8)0.0073 (8)
C90.0495 (9)0.0536 (9)0.0642 (10)−0.0071 (7)−0.0033 (8)0.0033 (8)
C100.0716 (12)0.0697 (12)0.0694 (12)−0.0167 (10)0.0057 (10)−0.0074 (9)
C110.0756 (14)0.0754 (13)0.1040 (17)−0.0095 (11)0.0001 (12)−0.0284 (12)
C120.0862 (15)0.0553 (11)0.1186 (19)−0.0149 (10)−0.0175 (14)0.0007 (12)
C130.0981 (17)0.0699 (13)0.0921 (15)−0.0261 (12)−0.0062 (13)0.0163 (11)
C140.0676 (12)0.0668 (11)0.0717 (11)−0.0108 (9)0.0053 (10)0.0052 (9)
N10.0530 (8)0.0533 (7)0.0556 (7)−0.0044 (6)−0.0038 (6)0.0048 (6)
O10.0792 (9)0.0590 (7)0.0629 (7)0.0081 (6)−0.0172 (6)0.0035 (5)
O20.0848 (10)0.0764 (9)0.0826 (9)−0.0197 (7)−0.0339 (8)0.0115 (7)
Cl10.0859 (4)0.0561 (3)0.0822 (3)−0.0074 (2)0.0026 (3)−0.0062 (2)
Cl20.0989 (4)0.0610 (3)0.0943 (4)0.0118 (3)−0.0031 (3)0.0214 (2)
F10.1037 (15)0.0859 (13)0.0857 (12)−0.0125 (10)0.0384 (11)0.0034 (10)
F20.086 (3)0.095 (3)0.073 (2)−0.018 (2)0.0152 (18)−0.0176 (18)

Geometric parameters (Å, °)

C1—O11.1961 (19)C9—C101.376 (3)
C1—N11.405 (2)C9—C141.377 (2)
C1—C21.485 (2)C9—N11.425 (2)
C2—C31.374 (2)C10—C111.379 (3)
C2—C71.375 (2)C10—F21.390 (4)
C3—C41.389 (2)C10—H100.942 (2)
C3—H30.9300C11—C121.379 (3)
C4—C51.396 (3)C11—H110.9300
C4—Cl11.7213 (17)C12—C131.362 (3)
C5—C61.387 (3)C12—H120.9300
C5—Cl21.7169 (17)C13—C141.372 (3)
C6—C71.375 (2)C13—H130.9300
C6—H60.9300C14—F11.339 (3)
C7—C81.486 (2)C14—H140.935 (2)
C8—O21.204 (2)F1—H140.4311 (19)
C8—N11.395 (2)F2—H100.509 (4)
O1—C1—N1125.46 (15)C10—C9—N1121.51 (15)
O1—C1—C2129.22 (15)C14—C9—N1119.33 (16)
N1—C1—C2105.32 (13)C9—C10—C11120.04 (19)
C3—C2—C7121.37 (15)C9—C10—F2113.1 (2)
C3—C2—C1130.02 (15)C11—C10—F2125.8 (2)
C7—C2—C1108.60 (14)C9—C10—H10121.51 (19)
C2—C3—C4117.92 (16)C11—C10—H10118.4 (2)
C2—C3—H3121.0C10—C11—C12119.7 (2)
C4—C3—H3121.0C10—C11—H11120.1
C3—C4—C5120.63 (16)C12—C11—H11120.1
C3—C4—Cl1118.77 (14)C13—C12—C11120.6 (2)
C5—C4—Cl1120.61 (13)C13—C12—H12119.7
C6—C5—C4120.61 (15)C11—C12—H12119.7
C6—C5—Cl2118.79 (14)C12—C13—C14119.4 (2)
C4—C5—Cl2120.60 (14)C12—C13—H13120.3
C7—C6—C5117.91 (16)C14—C13—H13120.3
C7—C6—H6121.0F1—C14—C13122.1 (2)
C5—C6—H6121.0F1—C14—C9116.75 (17)
C6—C7—C2121.55 (16)C13—C14—C9121.1 (2)
C6—C7—C8129.94 (15)C13—C14—H14116.5 (2)
C2—C7—C8108.50 (14)C9—C14—H14122.33 (19)
O2—C8—N1125.90 (17)C8—N1—C1111.95 (13)
O2—C8—C7128.49 (16)C8—N1—C9124.52 (14)
N1—C8—C7105.61 (14)C1—N1—C9123.45 (14)
C10—C9—C14119.16 (17)
O1—C1—C2—C30.3 (3)N1—C9—C10—C11−179.04 (18)
N1—C1—C2—C3−179.36 (16)C14—C9—C10—F2−168.5 (2)
O1—C1—C2—C7179.79 (17)N1—C9—C10—F211.8 (3)
N1—C1—C2—C70.13 (17)C9—C10—C11—C12−0.1 (3)
C7—C2—C3—C40.5 (2)F2—C10—C11—C12167.6 (3)
C1—C2—C3—C4179.97 (15)C10—C11—C12—C13−0.2 (4)
C2—C3—C4—C5−0.9 (2)C11—C12—C13—C14−0.1 (4)
C2—C3—C4—Cl1179.09 (12)C12—C13—C14—F1−175.6 (2)
C3—C4—C5—C60.6 (3)C12—C13—C14—C90.7 (3)
Cl1—C4—C5—C6−179.39 (13)C10—C9—C14—F1175.55 (19)
C3—C4—C5—Cl2−179.33 (13)N1—C9—C14—F1−4.7 (3)
Cl1—C4—C5—Cl20.7 (2)C10—C9—C14—C13−1.0 (3)
C4—C5—C6—C70.1 (2)N1—C9—C14—C13178.76 (19)
Cl2—C5—C6—C7−179.98 (12)O2—C8—N1—C1−178.75 (17)
C5—C6—C7—C2−0.5 (2)C7—C8—N1—C11.21 (18)
C5—C6—C7—C8179.55 (16)O2—C8—N1—C9−1.9 (3)
C3—C2—C7—C60.2 (2)C7—C8—N1—C9178.08 (14)
C1—C2—C7—C6−179.39 (14)O1—C1—N1—C8179.45 (16)
C3—C2—C7—C8−179.87 (15)C2—C1—N1—C8−0.86 (17)
C1—C2—C7—C80.59 (18)O1—C1—N1—C92.5 (3)
C6—C7—C8—O2−1.2 (3)C2—C1—N1—C9−177.77 (14)
C2—C7—C8—O2178.87 (17)C10—C9—N1—C8−62.0 (2)
C6—C7—C8—N1178.88 (16)C14—C9—N1—C8118.29 (19)
C2—C7—C8—N1−1.10 (18)C10—C9—N1—C1114.5 (2)
C14—C9—C10—C110.7 (3)C14—C9—N1—C1−65.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.993.844 (4)153

Symmetry codes: (i) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2693).

References

  • Abdel-Hafez, A. A. M. (2004). Arch. Pharm. Res.27, 495–501. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res.4, 472–479. [PubMed]
  • Loudon, M. G. (2002). Organic Chemistry, 4th ed., pp. 837, 874–880. Oxford University Press.
  • Sena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc.18, 1224–1234.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography