PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o885.
Published online 2008 April 23. doi:  10.1107/S1600536808010532
PMCID: PMC2961112

1,4,8,11-Tetra­kis(carboxy­meth­yl)-5,5,7,12,12,14-hexa­methyl-4,11-diaza-1,8-diazo­niacyclo­tetra­decane dichloride dihydrate

Abstract

The title compound, C24H46N4O8 2+·2Cl·2H2O, was synthes­ized by the hydrolysis of tetra­ethyl 2,2′,2′′,2′′′-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane-1,4,8,11-tetra­yl) tetra­acetate in hydro­chloric acid solution. The crystal structure of the title compound consists of a 14-membered C10N4 centrosymmetric cationic macrocycle which inter­acts with the chloride ions and water mol­ecules of crystallization to give a three-dimensional hydrogen-bonded network.

Related literature

For related literature, see: Marinelli et al. (2002 [triangle]); Wang (2001 [triangle]); Xu et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o885-scheme1.jpg

Experimental

Crystal data

  • C24H46N4O8 2+·2Cl·2H2O
  • M r = 625.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o885-efi1.jpg
  • a = 9.977 (5) Å
  • b = 13.475 (7) Å
  • c = 11.572 (6) Å
  • β = 104.220 (9)°
  • V = 1508.1 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 293 (2) K
  • 0.10 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 15242 measured reflections
  • 2946 independent reflections
  • 2036 reflections with I > 2σ(I)
  • R int = 0.143

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.141
  • S = 0.98
  • 2946 reflections
  • 194 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010532/wn2251sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010532/wn2251Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by a Key Grant (No. 206118) from the Ministry of Education and the Natural Science Foundation of Hainan Province (No. 80619).

supplementary crystallographic information

Comment

N-functionalized macrocyclic acids are an important class of compounds for their utility as MRI contrast agents (Marinelli et al., 2002) and their strong chelating ability (Xu et al., 1988). For this reason, we have synthesized the title compound by the hydrolysis of tetraethyl 2,2',2'',2'''-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl) tetraacetate (Wang et al., 2001) in hydrochloric acid solution.

The bond lengths and angles in the title compound are within normal ranges. The structural data confirm that the 14-membered macrocycle lies on a center of inversion and each N atom is linked to a carboxymethyl group. The macrocycle carries two positive charges arising from the protonation of N atoms. The net charge is balanced by two chloride ions. The cations and anions interact with each other and with the water molecules of crystallization to furnish a hydrogen-bonded network structure (Table 1). The structure of the title compound, showing 50% probability displacement ellipsoids is shown in Fig. 1 and a view of the hydrogen bonding in Fig. 2.

Experimental

Tetraethyl 2,2',2'',2'''-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetate (0.625 g, 1 mmol) was dissolved in 200 ml of hydrochloric acid solution (v:v, 1:1) and allowed to stand in air at room temperature over a period of three weeks. Colourless block crystals suitable for X-ray diffraction analysis were formed at the bottom of the vessel (yield 87%).

Refinement

The water hydrogen atoms were refined freely, resulting in O—H bond lengths of 0.76 (3) and 0.88 (5) Å. Other H atoms were positioned geometrically, with N—H = 0.91 Å, O—H = 0.82 Å, C—H = 0.96 Å for methyl, 0.97 Å for methylene and 0.98 Å for methine. Uiso(H) = xUeq(carrier atom), where x = 1.5 for O and methyl, x = 1.2 for all other carrier atoms. The value of Rint (0.14) is high because of the quality of the diffraction data.

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: (a) 1-x, 2-y, -z.
Fig. 2.
A view of the hydrogen bonding. Dashed lines indicate hydrogen bonds.

Crystal data

C24H46N4O82+·2Cl·2H2OF000 = 672
Mr = 625.58Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17651 reflections
a = 9.977 (5) Åθ = 2.4–24.9º
b = 13.475 (7) ŵ = 0.27 mm1
c = 11.572 (6) ÅT = 293 (2) K
β = 104.220 (9)ºBLOCK, colorless
V = 1508.1 (13) Å30.10 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.143
Monochromator: graphiteθmax = 26.0º
T = 293(2) Kθmin = 2.4º
[var phi] and ω scansh = −12→12
Absorption correction: nonek = −16→16
15242 measured reflectionsl = −14→14
2946 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141  w = 1/[σ2(Fo2) + (0.0715P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.032
2946 reflectionsΔρmax = 0.63 e Å3
194 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5351 (3)0.98193 (17)−0.1532 (2)0.0292 (6)
H1A0.46670.9400−0.13060.035*
H1B0.53600.9664−0.23480.035*
C20.7189 (3)0.85672 (17)−0.0818 (2)0.0335 (6)
H20.81500.8530−0.03490.040*
C30.6370 (3)0.78525 (17)−0.0239 (2)0.0323 (6)
H3A0.64850.7189−0.05250.039*
H3B0.53980.8021−0.05110.039*
C40.6741 (3)0.78252 (17)0.1120 (2)0.0319 (6)
C50.5034 (2)0.90943 (16)0.1443 (2)0.0285 (6)
H5A0.47520.87260.20640.034*
H5B0.45160.88360.06820.034*
C60.7192 (4)0.8235 (2)−0.2076 (3)0.0495 (8)
H6A0.62570.8156−0.25370.074*
H6B0.76730.7614−0.20410.074*
H6C0.76490.8726−0.24440.074*
C70.8226 (3)0.7482 (2)0.1616 (3)0.0422 (7)
H7A0.83710.68660.12480.063*
H7B0.83940.73910.24620.063*
H7C0.88500.79740.14500.063*
C80.5799 (3)0.70891 (19)0.1556 (3)0.0442 (7)
H8A0.60220.64250.13690.066*
H8B0.48510.72280.11690.066*
H8C0.59330.71540.24030.066*
C90.7378 (2)0.91341 (19)0.2780 (2)0.0328 (6)
H9A0.74220.85500.32780.039*
H9B0.69350.96600.31210.039*
C100.8828 (3)0.94509 (17)0.2765 (2)0.0303 (6)
C110.7806 (3)1.03008 (17)−0.0922 (2)0.0338 (6)
H11A0.75621.0512−0.17490.041*
H11B0.86690.9937−0.07930.041*
C120.8052 (3)1.12186 (18)−0.0142 (2)0.0319 (6)
Cl10.27157 (7)0.97170 (5)0.43440 (7)0.0480 (3)
N10.6734 (2)0.96203 (13)−0.07355 (18)0.0270 (5)
H1N0.66600.97140.00250.032*
N20.6540 (2)0.89074 (14)0.15548 (17)0.0275 (5)
O10.74179 (19)1.14840 (14)0.05549 (17)0.0405 (5)
O20.9133 (2)1.17039 (15)−0.0337 (2)0.0572 (6)
H2A0.92601.22120.00650.086*
O30.9143 (2)0.97572 (14)0.19069 (18)0.0449 (5)
O40.96439 (19)0.93712 (15)0.38441 (16)0.0434 (5)
H41.04090.95960.38490.065*
O1W0.5390 (3)0.84981 (16)0.4486 (2)0.0519 (6)
H2W0.594 (4)0.887 (2)0.479 (3)0.042 (10)*
H1W0.457 (5)0.877 (3)0.443 (4)0.092 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0262 (13)0.0260 (12)0.0318 (13)0.0029 (10)0.0005 (11)0.0006 (10)
C20.0304 (14)0.0251 (12)0.0417 (15)0.0084 (11)0.0026 (12)−0.0014 (11)
C30.0336 (14)0.0220 (12)0.0357 (14)0.0030 (11)−0.0019 (11)−0.0050 (10)
C40.0332 (14)0.0217 (12)0.0356 (14)0.0055 (10)−0.0012 (11)−0.0029 (10)
C50.0218 (12)0.0263 (12)0.0340 (14)−0.0011 (10)0.0002 (11)0.0031 (10)
C60.070 (2)0.0378 (15)0.0471 (18)0.0086 (15)0.0258 (16)−0.0046 (13)
C70.0435 (17)0.0368 (14)0.0398 (15)0.0101 (13)−0.0021 (13)−0.0001 (12)
C80.0569 (19)0.0261 (13)0.0446 (16)−0.0013 (13)0.0031 (14)0.0076 (12)
C90.0271 (13)0.0387 (14)0.0279 (13)0.0018 (11)−0.0022 (11)−0.0041 (11)
C100.0298 (14)0.0239 (12)0.0324 (14)0.0020 (10)−0.0017 (11)−0.0037 (10)
C110.0292 (13)0.0320 (13)0.0405 (15)−0.0007 (11)0.0094 (12)−0.0045 (11)
C120.0279 (14)0.0287 (13)0.0365 (14)−0.0008 (11)0.0029 (12)0.0030 (11)
Cl10.0331 (4)0.0426 (4)0.0634 (5)−0.0038 (3)0.0023 (3)0.0034 (3)
N10.0249 (11)0.0246 (10)0.0298 (11)0.0013 (8)0.0036 (9)−0.0025 (8)
N20.0248 (11)0.0229 (10)0.0298 (11)0.0027 (8)−0.0025 (9)−0.0029 (8)
O10.0330 (10)0.0486 (11)0.0384 (11)−0.0090 (9)0.0060 (9)−0.0126 (9)
O20.0537 (14)0.0430 (12)0.0839 (17)−0.0206 (10)0.0339 (13)−0.0177 (11)
O30.0393 (12)0.0501 (12)0.0415 (12)−0.0057 (9)0.0023 (9)0.0060 (9)
O40.0286 (10)0.0547 (12)0.0392 (11)−0.0042 (9)−0.0065 (9)−0.0003 (9)
O1W0.0484 (15)0.0327 (11)0.0759 (17)0.0025 (11)0.0176 (13)0.0018 (11)

Geometric parameters (Å, °)

C1—N11.483 (3)C7—H7B0.9600
C1—C5i1.523 (3)C7—H7C0.9600
C1—H1A0.9700C8—H8A0.9600
C1—H1B0.9700C8—H8B0.9600
C2—N11.500 (3)C8—H8C0.9600
C2—C31.521 (4)C9—N21.490 (3)
C2—C61.524 (4)C9—C101.513 (4)
C2—H20.9800C9—H9A0.9700
C3—C41.525 (4)C9—H9B0.9700
C3—H3A0.9700C10—O31.186 (3)
C3—H3B0.9700C10—O41.317 (3)
C4—C71.523 (4)C11—N11.465 (3)
C4—C81.535 (4)C11—C121.515 (4)
C4—N21.571 (3)C11—H11A0.9700
C5—N21.497 (3)C11—H11B0.9700
C5—C1i1.523 (3)C12—O11.196 (3)
C5—H5A0.9700C12—O21.327 (3)
C5—H5B0.9700N1—H1N0.9100
C6—H6A0.9600O2—H2A0.8200
C6—H6B0.9600O4—H40.8200
C6—H6C0.9600O1W—H2W0.76 (3)
C7—H7A0.9600O1W—H1W0.88 (5)
N1—C1—C5i110.10 (18)C4—C7—H7C109.5
N1—C1—H1A109.6H7A—C7—H7C109.5
C5i—C1—H1A109.6H7B—C7—H7C109.5
N1—C1—H1B109.6C4—C8—H8A109.5
C5i—C1—H1B109.6C4—C8—H8B109.5
H1A—C1—H1B108.2H8A—C8—H8B109.5
N1—C2—C3111.5 (2)C4—C8—H8C109.5
N1—C2—C6114.2 (2)H8A—C8—H8C109.5
C3—C2—C6111.3 (2)H8B—C8—H8C109.5
N1—C2—H2106.4N2—C9—C10111.2 (2)
C3—C2—H2106.4N2—C9—H9A109.4
C6—C2—H2106.4C10—C9—H9A109.4
C2—C3—C4116.7 (2)N2—C9—H9B109.4
C2—C3—H3A108.1C10—C9—H9B109.4
C4—C3—H3A108.1H9A—C9—H9B108.0
C2—C3—H3B108.1O3—C10—O4126.4 (3)
C4—C3—H3B108.1O3—C10—C9123.9 (2)
H3A—C3—H3B107.3O4—C10—C9109.6 (2)
C7—C4—C3111.3 (2)N1—C11—C12116.1 (2)
C7—C4—C8107.3 (2)N1—C11—H11A108.3
C3—C4—C8110.0 (2)C12—C11—H11A108.3
C7—C4—N2110.47 (19)N1—C11—H11B108.3
C3—C4—N2106.86 (18)C12—C11—H11B108.3
C8—C4—N2111.0 (2)H11A—C11—H11B107.4
N2—C5—C1i114.86 (19)O1—C12—O2123.7 (2)
N2—C5—H5A108.6O1—C12—C11127.7 (2)
C1i—C5—H5A108.6O2—C12—C11108.7 (2)
N2—C5—H5B108.6C11—N1—C1113.39 (19)
C1i—C5—H5B108.6C11—N1—C2109.8 (2)
H5A—C5—H5B107.5C1—N1—C2112.43 (18)
C2—C6—H6A109.5C11—N1—H1N106.9
C2—C6—H6B109.5C1—N1—H1N106.9
H6A—C6—H6B109.5C2—N1—H1N106.9
C2—C6—H6C109.5C9—N2—C5111.37 (19)
H6A—C6—H6C109.5C9—N2—C4114.14 (17)
H6B—C6—H6C109.5C5—N2—C4109.45 (17)
C4—C7—H7A109.5C12—O2—H2A109.5
C4—C7—H7B109.5C10—O4—H4109.5
H7A—C7—H7B109.5H2W—O1W—H1W107 (3)
N1—C2—C3—C4−75.6 (3)C6—C2—N1—C11−71.7 (3)
C6—C2—C3—C4155.6 (2)C3—C2—N1—C1−71.7 (3)
C2—C3—C4—C7−62.6 (3)C6—C2—N1—C155.5 (3)
C2—C3—C4—C8178.6 (2)C10—C9—N2—C5−151.36 (19)
C2—C3—C4—N258.1 (3)C10—C9—N2—C484.1 (2)
N2—C9—C10—O320.5 (3)C1i—C5—N2—C967.6 (3)
N2—C9—C10—O4−162.1 (2)C1i—C5—N2—C4−165.3 (2)
N1—C11—C12—O1−5.1 (4)C7—C4—N2—C9−34.3 (3)
N1—C11—C12—O2174.1 (2)C3—C4—N2—C9−155.5 (2)
C12—C11—N1—C192.6 (3)C8—C4—N2—C984.6 (2)
C12—C11—N1—C2−140.7 (2)C7—C4—N2—C5−159.9 (2)
C5i—C1—N1—C11−52.7 (3)C3—C4—N2—C578.9 (2)
C5i—C1—N1—C2−178.0 (2)C8—C4—N2—C5−41.0 (2)
C3—C2—N1—C11161.1 (2)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···Cl1ii0.822.243.012 (3)158
O2—H2A···O1Wiii0.821.822.610 (3)162
O1W—H2W···Cl1iv0.76 (3)2.40 (3)3.152 (3)169 (3)

Symmetry codes: (ii) x+1, y, z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2251).

References

  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Marinelli, E. R., Neubeck, R., Song, B., Wagler, T., Ranganathan, R. S., Sukumaran, K., Wedeking, P., Nunn, A., Runge, V. & Tweedle, M. (2002). Acad. Radiol.9, s251–s254. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S. F. (2001). Chin. J. Syn. Chem.9, 223–226, 231.
  • Xu, J. D., Ni, S. S. & Lin, Y. J. (1988). Inorg. Chem. , 4651–4657.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography