PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o783.
Published online 2008 April 2. doi:  10.1107/S1600536808005254
PMCID: PMC2961110

17α-Ethynyl-3-methoxy­estra-1,3,5(10),9(11)-tetraen-17-ol

Abstract

In the title compound, C21H24O2, rings B, C and D adopt half-chair, distorted half-chair and envelope conformations, respectively. In the crystal structure, there is an inter­molecular O—H(...)O hydrogen bond. The mol­ecules are arranged in a head-to-tail fashion, with the meth­oxy and hydr­oxy groups forming a two-dimensional hydrogen-bond network.

Related literature

For related literature, see: Doussot et al. (1995 [triangle]); Ekhato et al. (2002 [triangle]); Sedee et al. (1985 [triangle]); Steiner et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o783-scheme1.jpg

Experimental

Crystal data

  • C21H24O2
  • M r = 308.40
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o783-efi1.jpg
  • a = 7.3773 (6) Å
  • b = 10.7430 (9) Å
  • c = 21.2555 (18) Å
  • V = 1684.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.50 × 0.43 × 0.34 mm

Data collection

  • Rigaku FCR CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.824, T max = 1.000 (expected range = 0.802–0.974)
  • 9960 measured reflections
  • 2127 independent reflections
  • 1884 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.114
  • S = 1.03
  • 2127 reflections
  • 214 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005254/wn2237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005254/wn2237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of the project by the Program for Changjiang Scholars and Innovative Research Team in the University (No. IRT0526) and Shanghai Natural Science Foundation (No. 06ZR14001) is acknowledged.

supplementary crystallographic information

Comment

The title compound is a photodecomposition product of mestranol (Sedee et al., 1985) and can be used as an intermediate for the synthesis of steroidal drugs. The preparation of the title compound starting from mestranol, through an oxidative dehydrogenation with 2,3-dichloro-5,6-dicyanoquinone (DDQ) in methanol, was reported by Doussot et al. (1995) However, no crystal structure of the title compound has been reported thus far. Here we present the crystal structure of 17α-ethinyl-3-methoxyestra-1,3,5(10),9(11)-tetraen-17-ol.

The geometry (Fig. 1) of the steroid skeleton does not differ significantly from that of mestranol (Steiner et al., 1997), except, of course, for the C?C bond in ring C. There is an intermolecular hydrogen bond O2—H3···O1, but no intra- or intermolecular hydrogen bonding between hydroxy and ethynyl groups is observed. The molecules are arranged in a head-to-tail fashion, different from the head-to-head fashion observed in mestranol, with the methoxy and hydroxy groups forming a two-dimensional hydrogen bond network (Fig. 2).

Experimental

The title compound was prepared, in 90% yield, by methylation of 3,17β-dihydroxy-19-norpregna-1,3,5(10),9(11)-tetraen-20-yne (Ekhato et al., 2002) with methyl iodide and potassium carbonate at room temperature. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethyl acetate and petroleum ether (1:1, v/v).

Refinement

The H atom bonded to O was located in a difference map and refined with a distance restraint of O—H = 0.82 (4) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for benzene and acetylenic C—H, 0.96 Å for methyl C—H, 0.97 Å for methylene C—H, and 0.98Å for methine C—H; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
The crystal structure of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds

Crystal data

C21H24O2Dx = 1.216 Mg m3
Mr = 308.40Melting point: 145 K
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
a = 7.3773 (6) ÅCell parameters from 3971 reflections
b = 10.7430 (9) Åθ = 5.4–53.4º
c = 21.2555 (18) ŵ = 0.08 mm1
V = 1684.6 (2) Å3T = 293 (2) K
Z = 4Prismatic, colorless
F000 = 6640.50 × 0.43 × 0.35 mm

Data collection

Rigaku FCR CCD area-detector diffractometer2127 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.071
T = 293(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −7→9
Tmin = 0.824, Tmax = 1.000k = −13→9
9960 measured reflectionsl = −25→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114  w = 1/[σ2(Fo2) + (0.0757P)2 + 0.0067P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2127 reflectionsΔρmax = 0.20 e Å3
214 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3222 (3)0.77612 (18)0.73106 (7)0.0684 (5)
O20.5307 (3)0.26039 (16)1.17027 (8)0.0583 (5)
C10.2555 (3)0.6031 (2)0.87459 (10)0.0502 (5)
H10.16180.55840.89320.060*
C20.2245 (3)0.6607 (2)0.81810 (10)0.0556 (6)
H20.11080.65610.79940.067*
C30.3626 (3)0.7256 (2)0.78916 (10)0.0497 (5)
C40.5296 (3)0.7326 (2)0.81737 (10)0.0503 (5)
H40.62270.77620.79780.060*
C50.5612 (3)0.67502 (19)0.87522 (10)0.0422 (5)
C60.7485 (3)0.6809 (2)0.90286 (11)0.0548 (6)
H6A0.79930.76280.89510.066*
H6B0.82500.62030.88200.066*
C70.7495 (3)0.6558 (2)0.97282 (11)0.0496 (5)
H7A0.69360.72510.99470.059*
H7B0.87370.64870.98730.059*
C80.6478 (2)0.53696 (19)0.98837 (9)0.0362 (4)
H80.70430.46840.96520.043*
C90.4518 (3)0.54791 (17)0.96698 (9)0.0345 (4)
C100.4221 (3)0.60908 (18)0.90521 (9)0.0380 (4)
C110.3154 (3)0.50772 (19)1.00285 (9)0.0376 (4)
H110.19850.52070.98780.045*
C120.3331 (3)0.44369 (19)1.06504 (9)0.0379 (4)
H12A0.25220.37261.06630.045*
H12B0.29800.50041.09840.045*
C130.5267 (3)0.40034 (17)1.07587 (8)0.0358 (4)
C140.6545 (3)0.50617 (18)1.05775 (9)0.0369 (4)
H140.61330.58041.08040.044*
C150.8389 (3)0.4696 (2)1.08594 (10)0.0517 (6)
H15A0.91400.42881.05470.062*
H15B0.90230.54241.10150.062*
C160.7939 (3)0.3803 (3)1.13995 (11)0.0572 (6)
H16A0.84670.40971.17900.069*
H16B0.84080.29781.13110.069*
C170.5855 (3)0.3774 (2)1.14476 (10)0.0447 (5)
C180.5615 (3)0.28188 (19)1.03758 (9)0.0471 (5)
H18A0.52950.29620.99440.071*
H18B0.48930.21511.05410.071*
H18C0.68740.26011.04020.071*
C200.4291 (5)0.8770 (3)0.70975 (14)0.0782 (9)
H19A0.55120.84930.70300.117*
H19B0.42840.94190.74080.117*
H19C0.38010.90830.67100.117*
C210.5210 (3)0.4781 (2)1.18698 (9)0.0500 (5)
C220.4707 (4)0.5547 (3)1.22112 (11)0.0644 (7)
H210.43030.61621.24850.077*
H30.425 (5)0.260 (3)1.1812 (13)0.079 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0730 (12)0.0800 (12)0.0523 (9)0.0059 (10)0.0010 (9)0.0254 (8)
O20.0669 (13)0.0551 (10)0.0528 (9)0.0104 (9)0.0036 (8)0.0111 (7)
C10.0378 (11)0.0683 (14)0.0445 (11)−0.0046 (11)0.0001 (9)0.0071 (10)
C20.0426 (12)0.0772 (16)0.0472 (12)0.0009 (12)−0.0074 (9)0.0103 (12)
C30.0527 (12)0.0535 (12)0.0429 (11)0.0087 (11)0.0024 (9)0.0062 (10)
C40.0492 (13)0.0485 (12)0.0532 (12)−0.0034 (10)0.0119 (10)0.0080 (10)
C50.0393 (11)0.0396 (10)0.0477 (11)−0.0016 (8)0.0050 (9)−0.0006 (9)
C60.0379 (11)0.0630 (14)0.0634 (14)−0.0149 (11)0.0014 (10)0.0112 (12)
C70.0365 (10)0.0542 (12)0.0580 (13)−0.0110 (10)−0.0068 (9)0.0003 (10)
C80.0274 (8)0.0414 (10)0.0396 (10)−0.0003 (8)0.0002 (7)−0.0059 (8)
C90.0311 (9)0.0332 (9)0.0392 (9)−0.0010 (8)−0.0021 (7)−0.0051 (7)
C100.0350 (10)0.0392 (10)0.0399 (9)0.0004 (8)0.0028 (8)−0.0037 (8)
C110.0276 (8)0.0424 (10)0.0429 (10)0.0019 (8)−0.0013 (8)−0.0005 (8)
C120.0321 (10)0.0410 (10)0.0406 (10)−0.0013 (8)0.0003 (8)−0.0013 (8)
C130.0342 (9)0.0373 (9)0.0358 (9)0.0037 (8)−0.0004 (7)−0.0044 (7)
C140.0301 (9)0.0410 (10)0.0397 (9)0.0024 (8)−0.0031 (7)−0.0086 (8)
C150.0348 (11)0.0690 (15)0.0515 (12)0.0035 (11)−0.0083 (9)−0.0047 (11)
C160.0463 (12)0.0728 (16)0.0525 (13)0.0130 (12)−0.0124 (10)0.0021 (11)
C170.0474 (11)0.0477 (11)0.0390 (10)0.0075 (10)−0.0031 (8)0.0003 (9)
C180.0522 (12)0.0395 (10)0.0496 (11)0.0024 (10)0.0042 (10)−0.0091 (9)
C200.101 (2)0.0648 (16)0.0685 (16)0.0106 (18)0.0222 (16)0.0199 (13)
C210.0557 (13)0.0572 (13)0.0369 (10)−0.0028 (11)−0.0062 (9)−0.0045 (10)
C220.0740 (17)0.0709 (16)0.0482 (12)0.0020 (15)−0.0018 (12)−0.0185 (12)

Geometric parameters (Å, °)

O1—C31.381 (3)C11—C121.496 (3)
O1—C201.415 (4)C11—H110.9300
O2—C171.428 (3)C12—C131.520 (3)
O2—H30.82 (4)C12—H12A0.9700
C1—C21.370 (3)C12—H12B0.9700
C1—C101.392 (3)C13—C141.526 (3)
C1—H10.9300C13—C181.532 (3)
C2—C31.379 (3)C13—C171.547 (3)
C2—H20.9300C14—C151.538 (3)
C3—C41.373 (3)C14—H140.9800
C4—C51.396 (3)C15—C161.532 (3)
C4—H40.9300C15—H15A0.9700
C5—C101.400 (3)C15—H15B0.9700
C5—C61.503 (3)C16—C171.542 (3)
C6—C71.511 (3)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C6—H6B0.9700C17—C211.483 (3)
C7—C81.517 (3)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C141.512 (3)C20—H19A0.9600
C8—C91.520 (2)C20—H19B0.9600
C8—H80.9800C20—H19C0.9600
C9—C111.334 (3)C21—C221.159 (3)
C9—C101.484 (3)C22—H210.9300
C3—O1—C20117.8 (2)C11—C12—H12B109.5
C17—O2—H3113 (2)C13—C12—H12B109.5
C2—C1—C10122.4 (2)H12A—C12—H12B108.0
C2—C1—H1118.8C12—C13—C14108.29 (15)
C10—C1—H1118.8C12—C13—C18109.35 (17)
C1—C2—C3119.7 (2)C14—C13—C18112.42 (16)
C1—C2—H2120.1C12—C13—C17117.09 (16)
C3—C2—H2120.1C14—C13—C17100.62 (15)
C4—C3—C2119.7 (2)C18—C13—C17108.90 (16)
C4—C3—O1124.2 (2)C8—C14—C13112.88 (15)
C2—C3—O1116.0 (2)C8—C14—C15117.70 (17)
C3—C4—C5120.7 (2)C13—C14—C15104.93 (16)
C3—C4—H4119.7C8—C14—H14106.9
C5—C4—H4119.7C13—C14—H14106.9
C4—C5—C10120.2 (2)C15—C14—H14106.9
C4—C5—C6118.6 (2)C16—C15—C14105.10 (17)
C10—C5—C6121.13 (19)C16—C15—H15A110.7
C5—C6—C7112.43 (18)C14—C15—H15A110.7
C5—C6—H6A109.1C16—C15—H15B110.7
C7—C6—H6A109.1C14—C15—H15B110.7
C5—C6—H6B109.1H15A—C15—H15B108.8
C7—C6—H6B109.1C15—C16—C17106.14 (18)
H6A—C6—H6B107.9C15—C16—H16A110.5
C6—C7—C8111.26 (18)C17—C16—H16A110.5
C6—C7—H7A109.4C15—C16—H16B110.5
C8—C7—H7A109.4C17—C16—H16B110.5
C6—C7—H7B109.4H16A—C16—H16B108.7
C8—C7—H7B109.4O2—C17—C21108.75 (17)
H7A—C7—H7B108.0O2—C17—C16109.0 (2)
C14—C8—C7112.36 (16)C21—C17—C16110.2 (2)
C14—C8—C9109.86 (15)O2—C17—C13114.86 (18)
C7—C8—C9109.89 (17)C21—C17—C13111.54 (17)
C14—C8—H8108.2C16—C17—C13102.34 (18)
C7—C8—H8108.2C13—C18—H18A109.5
C9—C8—H8108.2C13—C18—H18B109.5
C11—C9—C10122.52 (17)H18A—C18—H18B109.5
C11—C9—C8121.42 (17)C13—C18—H18C109.5
C10—C9—C8116.03 (16)H18A—C18—H18C109.5
C1—C10—C5117.21 (18)H18B—C18—H18C109.5
C1—C10—C9121.55 (18)O1—C20—H19A109.5
C5—C10—C9121.24 (17)O1—C20—H19B109.5
C9—C11—C12126.00 (18)H19A—C20—H19B109.5
C9—C11—H11117.0O1—C20—H19C109.5
C12—C11—H11117.0H19A—C20—H19C109.5
C11—C12—C13110.91 (15)H19B—C20—H19C109.5
C11—C12—H12A109.5C22—C21—C17178.4 (2)
C13—C12—H12A109.5C21—C22—H21180.0
C10—C1—C2—C31.2 (4)C11—C12—C13—C1445.3 (2)
C1—C2—C3—C4−0.4 (4)C11—C12—C13—C18−77.5 (2)
C1—C2—C3—O1177.2 (2)C11—C12—C13—C17158.11 (17)
C20—O1—C3—C4−24.5 (3)C7—C8—C14—C13170.07 (16)
C20—O1—C3—C2158.0 (2)C9—C8—C14—C1347.4 (2)
C2—C3—C4—C5−0.2 (4)C7—C8—C14—C15−67.4 (2)
O1—C3—C4—C5−177.6 (2)C9—C8—C14—C15169.92 (17)
C3—C4—C5—C100.0 (3)C12—C13—C14—C8−65.2 (2)
C3—C4—C5—C6177.5 (2)C18—C13—C14—C855.8 (2)
C4—C5—C6—C7160.3 (2)C17—C13—C14—C8171.47 (15)
C10—C5—C6—C7−22.3 (3)C12—C13—C14—C15165.44 (16)
C5—C6—C7—C850.9 (3)C18—C13—C14—C15−73.6 (2)
C6—C7—C8—C14177.20 (18)C17—C13—C14—C1542.07 (18)
C6—C7—C8—C9−60.2 (2)C8—C14—C15—C16−149.88 (18)
C14—C8—C9—C11−13.5 (3)C13—C14—C15—C16−23.4 (2)
C7—C8—C9—C11−137.59 (19)C14—C15—C16—C17−4.8 (2)
C14—C8—C9—C10164.70 (15)C15—C16—C17—O2152.64 (18)
C7—C8—C9—C1040.6 (2)C15—C16—C17—C21−88.1 (2)
C2—C1—C10—C5−1.3 (3)C15—C16—C17—C1330.6 (2)
C2—C1—C10—C9178.8 (2)C12—C13—C17—O280.7 (2)
C4—C5—C10—C10.7 (3)C14—C13—C17—O2−162.21 (17)
C6—C5—C10—C1−176.7 (2)C18—C13—C17—O2−43.9 (2)
C4—C5—C10—C9−179.47 (17)C12—C13—C17—C21−43.6 (3)
C6—C5—C10—C93.1 (3)C14—C13—C17—C2173.5 (2)
C11—C9—C10—C1−14.8 (3)C18—C13—C17—C21−168.21 (19)
C8—C9—C10—C1167.05 (19)C12—C13—C17—C16−161.36 (18)
C11—C9—C10—C5165.4 (2)C14—C13—C17—C16−44.3 (2)
C8—C9—C10—C5−12.8 (3)C18—C13—C17—C1674.0 (2)
C10—C9—C11—C12179.06 (17)O2—C17—C21—C2225 (10)
C8—C9—C11—C12−2.9 (3)C16—C17—C21—C22−95 (10)
C9—C11—C12—C13−14.1 (3)C13—C17—C21—C22152 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H3···O1i0.82 (4)2.14 (4)2.933 (3)163 (3)

Symmetry codes: (i) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2237).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Doussot, J., Garreau, R., Dallery, L., Guette, J.-P. & Guy, A. (1995). Bull. Soc. Chim. Fr.132, 59–66.
  • Ekhato, I. V., Hurley, T., Lovdahl, M., Revitte, T. J., Guo, L., Huang, Y., Clipper, S. & Colson, C. (2002). Steroids, 67, 165–174. [PubMed]
  • Sedee, A. G. J., van Henegouwen, G. M. J. B., de Vries, M. E. & Erkelens, C. (1985). Steroids, 45, 101–118. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T., Lutz, B., van der Maas, J., Veldman, N., Schreurs, A. M. M., Kroon, J. & Kanters, J. A. (1997). Chem. Commun. pp. 191–192.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography