PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o828.
Published online 2008 April 10. doi:  10.1107/S1600536808009264
PMCID: PMC2961108

2,2,2-Trichloro-N-(2,5-dimethyl­phen­yl)acetamide

Abstract

The N—H bond in the title compound, C10H10Cl3NO, is syn to the 2-methyl and anti to the 5-methyl substituent of the aromatic ring. Adjacent mol­ecules are linked into chains through N—H(...)O hydrogen bonding. Two Cl atoms are each disordered equally over two sites.

Related literature

For related literature, see: Gowda, Foro & Fuess (2007 [triangle]); Gowda, Kožíšek et al. (2007 [triangle]); Shilpa & Gowda (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o828-scheme1.jpg

Experimental

Crystal data

  • C10H10Cl3NO
  • M r = 266.54
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o828-efi1.jpg
  • a = 4.9173 (9) Å
  • b = 11.290 (1) Å
  • c = 21.070 (2) Å
  • V = 1169.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.76 mm−1
  • T = 299 (2) K
  • 0.16 × 0.12 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.889, T max = 0.956
  • 6121 measured reflections
  • 2314 independent reflections
  • 703 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.088
  • wR(F 2) = 0.308
  • S = 0.86
  • 2314 reflections
  • 154 parameters
  • 37 restraints
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.76 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 887 Friedel pairs
  • Flack parameter: −0.4 (4)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009264/ng2441sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009264/ng2441Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2,2,2-trichloro-N- (2,5-dimethylphenyl)acetamide (25DMPTCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda, Foro et al., 2007; Gowda, Kožíšek et al., 2007). The conformation of the N—H bond in 25DMPTCA is syn to the 2-methyl and anti to the 5-methyl substituents in the aromatic ring (Fig. 1), similar to the syn conformation observed with respect to the 2-methyl substituent in 2,2,2-trichloro-N-(2-methylphenyl)acetamide (2MPTCA) (Gowda, Kožíšek et al., 2007). The bond parameters in 25DMPTCA are similar to those in 2MPTCA, 2,2,2-trichloro-N-(2,6-dimethylphenyl)- acetamide and other acetanilides (Gowda, Foro et al., 2007; Gowda, Kožíšek et al., 2007). The intermolecular N—H···O hydrogen bonds link the molecules into chains (Table 1 and Fig.2). The Cl atoms of CCl3 group are disordered and Cl1 and Cl3 were refined using a split model with site-occupation factors 0.5:0.5. No reliable disorder model could be produced for Cl2.

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Cl atoms of CCl3 group are disordered and Cl1 and Cl3 were refined using a split model with site-occupation factors 0.5:0.5. No reliable disorder model could be produced for Cl2. The C—Cl distances were restrained to 1.77 (2) Å and the distances in the disordered groups were restrained to be equal.

The compound is a weak anamalous scatterer with minor intensity at high θ value. The low fraction of unique data is above the 2σ level (30°).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H10Cl3NOF000 = 544
Mr = 266.54Dx = 1.514 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1061 reflections
a = 4.9173 (9) Åθ = 2.6–28.1º
b = 11.290 (1) ŵ = 0.76 mm1
c = 21.070 (2) ÅT = 299 (2) K
V = 1169.7 (3) Å3Prism, colourless
Z = 40.16 × 0.12 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector2314 independent reflections
Radiation source: Enhance (Mo) X-ray Source703 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.071
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and phi scans.θmin = 3.4º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −6→6
Tmin = 0.889, Tmax = 0.956k = −14→13
6121 measured reflectionsl = −26→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.088  w = 1/[σ2(Fo2) + (0.1675P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.309(Δ/σ)max = 0.003
S = 0.86Δρmax = 0.27 e Å3
2314 reflectionsΔρmin = −0.76 e Å3
154 parametersExtinction correction: none
37 restraintsAbsolute structure: Flack (1983), 887 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.4 (4)
Secondary atom site location: difference Fourier map

Special details

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A0.4909 (19)0.3895 (7)0.5055 (3)0.096 (2)0.50
Cl1B0.301 (3)0.3888 (10)0.5125 (4)0.139 (4)0.50
Cl20.0276 (14)0.5253 (7)0.5201 (3)0.218 (3)
Cl3A0.459 (2)0.6280 (6)0.4526 (3)0.102 (2)0.50
Cl3B0.226 (2)0.6324 (7)0.4737 (5)0.141 (3)0.50
O6−0.0518 (17)0.4448 (7)0.3920 (4)0.092 (3)
N70.3670 (16)0.4054 (7)0.3571 (4)0.069 (2)
H7N0.53560.41630.36620.083*
C40.311 (2)0.4931 (7)0.4592 (4)0.082 (3)
C50.180 (3)0.4444 (9)0.4003 (6)0.075 (3)
C80.308 (2)0.3488 (8)0.2991 (4)0.055 (3)
C90.4334 (19)0.2416 (9)0.2866 (5)0.062 (3)
C100.358 (2)0.1877 (10)0.2267 (5)0.079 (3)
H100.43360.11510.21540.095*
C110.178 (2)0.2420 (10)0.1863 (4)0.067 (3)
H110.13710.20540.14800.080*
C120.055 (2)0.3486 (10)0.2002 (5)0.069 (3)
C130.125 (2)0.4011 (9)0.2572 (4)0.062 (3)
H130.04660.47350.26790.074*
C140.624 (2)0.1827 (8)0.3309 (5)0.075 (3)
H14A0.53120.16550.37000.090*
H14B0.77500.23410.33920.090*
H14C0.68780.11030.31230.090*
C15−0.138 (2)0.4037 (11)0.1548 (5)0.091 (3)
H15A−0.28380.34970.14620.109*
H15B−0.04410.42180.11600.109*
H15C−0.20940.47530.17270.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.116 (6)0.109 (5)0.063 (3)0.023 (5)0.000 (4)−0.003 (3)
Cl1B0.172 (8)0.151 (7)0.093 (5)−0.036 (7)0.005 (6)0.037 (5)
Cl20.213 (6)0.278 (7)0.163 (4)0.011 (6)0.007 (4)−0.053 (4)
Cl3A0.135 (6)0.086 (4)0.086 (4)−0.038 (4)0.016 (4)−0.025 (3)
Cl3B0.151 (7)0.117 (6)0.154 (6)0.018 (6)−0.027 (6)−0.049 (5)
O60.052 (4)0.127 (7)0.099 (5)0.011 (5)−0.007 (4)−0.040 (5)
N70.049 (5)0.068 (5)0.092 (6)−0.004 (5)−0.014 (5)0.016 (5)
C40.091 (8)0.070 (7)0.084 (7)0.002 (7)−0.025 (7)−0.019 (6)
C50.056 (7)0.081 (8)0.088 (7)0.011 (7)−0.018 (7)−0.019 (6)
C80.055 (6)0.061 (6)0.048 (5)−0.009 (6)0.004 (6)−0.005 (5)
C90.045 (5)0.056 (6)0.086 (7)0.011 (6)0.004 (6)0.018 (6)
C100.079 (8)0.064 (7)0.095 (8)−0.004 (7)0.000 (7)−0.012 (6)
C110.077 (8)0.064 (7)0.061 (6)−0.004 (7)0.005 (6)0.005 (5)
C120.063 (7)0.078 (8)0.066 (6)−0.016 (7)−0.003 (6)0.022 (6)
C130.062 (6)0.062 (5)0.062 (6)0.006 (6)−0.005 (6)0.010 (5)
C140.073 (7)0.050 (6)0.102 (7)0.001 (7)−0.004 (7)0.000 (6)
C150.080 (8)0.119 (9)0.074 (6)−0.001 (9)−0.017 (7)0.019 (7)

Geometric parameters (Å, °)

Cl1A—C41.761 (11)C10—C111.373 (14)
Cl1B—C41.628 (11)C10—H100.9300
Cl2—C41.931 (10)C11—C121.378 (13)
Cl3A—C41.693 (10)C11—H110.9300
Cl3B—C41.656 (10)C12—C131.382 (14)
O6—C51.151 (11)C12—C151.484 (14)
N7—C51.367 (13)C13—H130.9300
N7—C81.411 (11)C14—H14A0.9600
N7—H7N0.8600C14—H14B0.9600
C4—C51.503 (13)C14—H14C0.9600
C8—C91.383 (12)C15—H15A0.9600
C8—C131.393 (13)C15—H15B0.9600
C9—C101.449 (14)C15—H15C0.9600
C9—C141.480 (12)
C5—N7—C8125.7 (8)C10—C9—C14121.5 (9)
C5—N7—H7N117.1C11—C10—C9121.1 (10)
C8—N7—H7N117.1C11—C10—H10119.5
C5—C4—Cl1B106.9 (8)C9—C10—H10119.5
C5—C4—Cl3B113.0 (8)C10—C11—C12122.8 (10)
Cl1B—C4—Cl3B123.5 (8)C10—C11—H11118.6
C5—C4—Cl3A116.5 (7)C12—C11—H11118.6
Cl1B—C4—Cl3A136.1 (7)C11—C12—C13116.8 (9)
Cl3B—C4—Cl3A43.0 (5)C11—C12—C15120.6 (10)
C5—C4—Cl1A115.4 (7)C13—C12—C15122.6 (11)
Cl1B—C4—Cl1A32.1 (4)C12—C13—C8121.9 (9)
Cl3B—C4—Cl1A131.0 (7)C12—C13—H13119.1
Cl3A—C4—Cl1A115.4 (7)C8—C13—H13119.1
C5—C4—Cl2107.8 (8)C9—C14—H14A109.5
Cl1B—C4—Cl269.8 (7)C9—C14—H14B109.5
Cl3B—C4—Cl261.1 (6)H14A—C14—H14B109.5
Cl3A—C4—Cl2101.2 (5)C9—C14—H14C109.5
Cl1A—C4—Cl296.8 (6)H14A—C14—H14C109.5
O6—C5—N7124.5 (10)H14B—C14—H14C109.5
O6—C5—C4123.3 (12)C12—C15—H15A109.5
N7—C5—C4112.1 (10)C12—C15—H15B109.5
C9—C8—C13122.6 (9)H15A—C15—H15B109.5
C9—C8—N7118.0 (9)C12—C15—H15C109.5
C13—C8—N7119.4 (9)H15A—C15—H15C109.5
C8—C9—C10114.8 (9)H15B—C15—H15C109.5
C8—C9—C14123.7 (9)
C8—N7—C5—O6−7.0 (17)C13—C8—C9—C10−0.2 (13)
C8—N7—C5—C4176.0 (8)N7—C8—C9—C10178.7 (9)
Cl1B—C4—C5—O684.0 (14)C13—C8—C9—C14−178.4 (9)
Cl3B—C4—C5—O6−55.0 (16)N7—C8—C9—C140.6 (13)
Cl3A—C4—C5—O6−102.5 (14)C8—C9—C10—C110.6 (14)
Cl1A—C4—C5—O6117.4 (13)C14—C9—C10—C11178.8 (9)
Cl2—C4—C5—O610.4 (14)C9—C10—C11—C12−1.1 (17)
Cl1B—C4—C5—N7−99.0 (10)C10—C11—C12—C131.0 (15)
Cl3B—C4—C5—N7121.9 (10)C10—C11—C12—C15179.7 (10)
Cl3A—C4—C5—N774.5 (11)C11—C12—C13—C8−0.6 (14)
Cl1A—C4—C5—N7−65.6 (11)C15—C12—C13—C8−179.3 (9)
Cl2—C4—C5—N7−172.6 (7)C9—C8—C13—C120.3 (14)
C5—N7—C8—C9−127.3 (10)N7—C8—C13—C12−178.7 (9)
C5—N7—C8—C1351.7 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N7—H7N···O6i0.862.122.984 (11)178

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2441).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2343–o2344.
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2571–o2572.
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd. Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd. Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography