PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o941.
Published online 2008 April 30. doi:  10.1107/S1600536808011963
PMCID: PMC2961103

2-(1H-1,2,3-Benzotriazol-1-yl)-1-m-toluoylethyl 2,4-dichloro­benzoate

Abstract

In the title compound, C23H17Cl2N3O3, the dihedral angles between the mean planes of the benzotriazole system and the methyl- and dichloro-substituted benzene rings are 47.72 (1) and 13.06 (1)°, respectively. In the crystal structure, inter­molecular C—H(...)O and C—H(...)π inter­actions help to consolidate the packing.

Related literature

For background, see Chen & Wu (2005 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o941-scheme1.jpg

Experimental

Crystal data

  • C23H17Cl2N3O3
  • M r = 454.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o941-efi1.jpg
  • a = 9.3395 (19) Å
  • b = 9.3065 (19) Å
  • c = 23.538 (5) Å
  • β = 92.10 (3)°
  • V = 2044.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 113 (2) K
  • 0.18 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.940, T max = 0.973
  • 11260 measured reflections
  • 3585 independent reflections
  • 3138 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.091
  • S = 1.10
  • 3585 reflections
  • 281 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011963/hb2721sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011963/hb2721Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1H-Benzotriazole and its derivatives exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

The molecule of (I) is chiral. In the arbitrarily chosen asymmetric molecule, C9 has S configuration, but crystal symmetry generates a racemic mixture. Otherwise, all the bond lengths and angles in (I) are within their normal ranges (Allen et al., 1987). The benzotriazole ring system is essentially planar, with a dihedral angle of 2.2 (8)° between the triazole ring (atoms N1—N3/C18/C23) and the C18—C23 benzene ring. The dihedral angles between the mean planes of the benzotriazole system and the C1—C6 and C11—C15 aromatic rings are 47.72 (1)° and 13.06 (1)°, respectively. The dihedral angle between rings C1—C6 and C11—C15 is 35.26 (2)°.

In the crystal, intermolecular C-H···O and C-H···π interactions (Table 1) help to consolidate the packing.

Experimental

Bromine (3.2 g, 0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-m-tolylpropan-1-one (5.30 g, 0.02 mol) and sodium acetate (1.6 g, 0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of 2-chlorobenzoic acid (3.8 g, 0.02 mol) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for 6 h. The solution was then filtered and concentrated. Colourless slabs of (I) were obtained by slow evaporation of ethanol solution at room temperature after one week.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 50% probability ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C23H17Cl2N3O3F000 = 936
Mr = 454.30Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5663 reflections
a = 9.3395 (19) Åθ = 1.7–27.9º
b = 9.3065 (19) ŵ = 0.35 mm1
c = 23.538 (5) ÅT = 113 (2) K
β = 92.10 (3)ºSlab, colourless
V = 2044.5 (7) Å30.18 × 0.16 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3585 independent reflections
Radiation source: X-ray tube3138 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 113(2) Kθmax = 25.0º
ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −11→10
Tmin = 0.940, Tmax = 0.973k = −11→10
11260 measured reflectionsl = −27→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091  w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0675P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3585 reflectionsΔρmax = 0.24 e Å3
281 parametersΔρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.16956 (4)0.45085 (4)0.044626 (17)0.02736 (13)
Cl20.48958 (4)0.53198 (5)−0.135572 (17)0.03077 (14)
O10.28238 (12)1.07298 (12)0.10792 (5)0.0272 (3)
O20.37879 (10)0.80863 (11)0.11568 (4)0.0208 (3)
O30.14534 (11)0.76130 (12)0.09646 (5)0.0309 (3)
N10.58217 (13)0.98801 (13)0.18828 (6)0.0199 (3)
N20.61195 (13)1.10055 (14)0.22405 (6)0.0255 (3)
N30.71818 (13)1.17383 (14)0.20467 (6)0.0279 (3)
C10.22159 (14)1.10721 (16)0.20360 (7)0.0189 (3)
C20.18316 (15)1.04219 (16)0.25408 (7)0.0194 (3)
H20.19830.94410.25900.023*
C30.12259 (14)1.12125 (16)0.29721 (7)0.0209 (3)
C40.10223 (15)1.26887 (16)0.28894 (7)0.0228 (4)
H40.06031.32320.31700.027*
C50.14371 (15)1.33491 (17)0.23954 (7)0.0244 (4)
H50.13201.43360.23520.029*
C60.20216 (15)1.25563 (16)0.19677 (7)0.0231 (4)
H60.22871.30040.16340.028*
C70.08028 (17)1.05045 (18)0.35132 (7)0.0272 (4)
H7A−0.01781.01980.34760.041*
H7B0.09081.11760.38220.041*
H7C0.14070.96870.35880.041*
C80.27983 (15)1.02509 (16)0.15583 (7)0.0197 (3)
C90.34219 (15)0.87504 (16)0.16804 (6)0.0198 (3)
H90.27070.81620.18670.024*
C100.26778 (15)0.75666 (16)0.08292 (7)0.0213 (3)
C110.32137 (15)0.69822 (16)0.02907 (7)0.0194 (3)
C120.28115 (15)0.56368 (16)0.00791 (7)0.0193 (3)
C130.33423 (15)0.51230 (17)−0.04221 (6)0.0212 (4)
H130.30860.4214−0.05550.025*
C140.42553 (15)0.59738 (17)−0.07222 (7)0.0221 (3)
C150.46799 (15)0.73162 (17)−0.05280 (7)0.0239 (4)
H150.53010.7878−0.07340.029*
C160.41582 (15)0.77997 (17)−0.00211 (7)0.0220 (3)
H160.44450.86960.01160.026*
C170.47953 (15)0.87985 (16)0.20522 (7)0.0210 (3)
H17A0.45450.89830.24420.025*
H17B0.52510.78630.20430.025*
C180.67506 (14)0.98839 (16)0.14484 (7)0.0188 (3)
C190.69518 (16)0.89704 (17)0.09888 (7)0.0227 (4)
H190.63660.81770.09190.027*
C200.80604 (16)0.93045 (19)0.06451 (8)0.0300 (4)
H200.82270.87270.03320.036*
C210.89552 (17)1.05053 (19)0.07554 (8)0.0342 (4)
H210.97011.06920.05150.041*
C220.87541 (16)1.13949 (18)0.12039 (8)0.0301 (4)
H220.93461.21840.12730.036*
C230.76221 (15)1.10800 (16)0.15590 (7)0.0239 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0300 (2)0.0263 (2)0.0262 (2)−0.00985 (15)0.00706 (17)−0.00106 (17)
Cl20.0362 (2)0.0404 (3)0.0161 (2)0.00522 (17)0.00562 (18)−0.00085 (17)
O10.0329 (6)0.0272 (6)0.0216 (7)−0.0044 (5)0.0046 (5)0.0035 (5)
O20.0188 (5)0.0247 (6)0.0192 (6)−0.0027 (4)0.0041 (4)−0.0069 (5)
O30.0210 (6)0.0373 (7)0.0351 (8)−0.0070 (5)0.0090 (5)−0.0115 (6)
N10.0210 (6)0.0172 (6)0.0214 (8)0.0009 (5)0.0001 (5)−0.0044 (5)
N20.0260 (7)0.0209 (7)0.0294 (8)0.0027 (5)−0.0027 (6)−0.0096 (6)
N30.0238 (7)0.0219 (7)0.0378 (9)−0.0003 (5)−0.0015 (6)−0.0053 (7)
C10.0153 (7)0.0201 (8)0.0212 (9)−0.0003 (6)−0.0013 (6)−0.0009 (7)
C20.0160 (7)0.0183 (8)0.0241 (9)0.0002 (5)0.0013 (6)−0.0017 (7)
C30.0144 (7)0.0257 (8)0.0224 (9)0.0005 (6)−0.0013 (6)−0.0035 (7)
C40.0166 (7)0.0245 (8)0.0271 (9)0.0026 (6)−0.0012 (6)−0.0086 (7)
C50.0225 (8)0.0176 (8)0.0326 (10)0.0027 (6)−0.0056 (7)−0.0015 (7)
C60.0209 (8)0.0227 (8)0.0253 (9)−0.0012 (6)−0.0028 (7)0.0036 (7)
C70.0264 (8)0.0320 (9)0.0234 (9)−0.0006 (7)0.0050 (7)−0.0050 (7)
C80.0166 (7)0.0215 (8)0.0210 (9)−0.0056 (6)0.0023 (6)0.0008 (7)
C90.0225 (8)0.0196 (8)0.0176 (8)−0.0022 (6)0.0072 (6)−0.0030 (6)
C100.0211 (8)0.0195 (8)0.0235 (9)−0.0036 (6)0.0029 (7)−0.0005 (7)
C110.0174 (7)0.0218 (8)0.0188 (9)0.0011 (6)−0.0008 (6)−0.0005 (7)
C120.0172 (7)0.0213 (8)0.0194 (8)−0.0012 (6)−0.0006 (6)0.0026 (6)
C130.0239 (8)0.0206 (8)0.0189 (9)0.0014 (6)−0.0025 (7)−0.0015 (7)
C140.0231 (8)0.0293 (9)0.0140 (8)0.0059 (6)0.0010 (6)0.0024 (7)
C150.0231 (8)0.0275 (9)0.0211 (9)−0.0013 (6)0.0020 (7)0.0063 (7)
C160.0228 (8)0.0214 (8)0.0217 (9)−0.0023 (6)0.0005 (7)0.0014 (7)
C170.0242 (8)0.0204 (8)0.0185 (9)0.0015 (6)0.0038 (6)−0.0006 (7)
C180.0164 (7)0.0171 (7)0.0230 (9)0.0025 (6)−0.0006 (6)0.0016 (6)
C190.0208 (7)0.0224 (8)0.0249 (9)−0.0005 (6)0.0003 (7)−0.0030 (7)
C200.0250 (8)0.0346 (10)0.0305 (10)0.0012 (7)0.0047 (7)−0.0046 (8)
C210.0231 (9)0.0382 (10)0.0418 (12)−0.0030 (7)0.0100 (8)0.0046 (9)
C220.0224 (8)0.0237 (9)0.0442 (12)−0.0049 (6)−0.0004 (8)0.0019 (8)
C230.0209 (8)0.0173 (8)0.0332 (10)0.0016 (6)−0.0039 (7)−0.0020 (7)

Geometric parameters (Å, °)

Cl1—C121.7326 (15)C8—C91.536 (2)
Cl2—C141.7370 (16)C9—C171.527 (2)
O1—C81.2136 (19)C9—H90.9800
O2—C101.3582 (18)C10—C111.483 (2)
O2—C91.4313 (18)C11—C161.394 (2)
O3—C101.1990 (18)C11—C121.394 (2)
N1—C181.365 (2)C12—C131.382 (2)
N1—N21.3660 (18)C13—C141.377 (2)
N1—C171.4557 (19)C13—H130.9300
N2—N31.3004 (19)C14—C151.383 (2)
N3—C231.377 (2)C15—C161.381 (2)
C1—C21.392 (2)C15—H150.9300
C1—C61.402 (2)C16—H160.9300
C1—C81.480 (2)C17—H17A0.9700
C2—C31.391 (2)C17—H17B0.9700
C2—H20.9300C18—C191.394 (2)
C3—C41.400 (2)C18—C231.398 (2)
C3—C71.500 (2)C19—C201.373 (2)
C4—C51.383 (2)C19—H190.9300
C4—H40.9300C20—C211.414 (2)
C5—C61.377 (2)C20—H200.9300
C5—H50.9300C21—C221.360 (3)
C6—H60.9300C21—H210.9300
C7—H7A0.9600C22—C231.403 (2)
C7—H7B0.9600C22—H220.9300
C7—H7C0.9600
C10—O2—C9116.18 (11)C16—C11—C12118.02 (15)
C18—N1—N2109.82 (12)C16—C11—C10119.32 (14)
C18—N1—C17130.54 (13)C12—C11—C10122.67 (14)
N2—N1—C17118.85 (13)C13—C12—C11121.03 (14)
N3—N2—N1109.06 (13)C13—C12—Cl1117.22 (12)
N2—N3—C23108.31 (13)C11—C12—Cl1121.69 (12)
C2—C1—C6119.34 (14)C14—C13—C12119.16 (15)
C2—C1—C8122.52 (14)C14—C13—H13120.4
C6—C1—C8118.13 (14)C12—C13—H13120.4
C3—C2—C1121.17 (14)C13—C14—C15121.67 (15)
C3—C2—H2119.4C13—C14—Cl2118.56 (13)
C1—C2—H2119.4C15—C14—Cl2119.77 (12)
C2—C3—C4118.33 (15)C16—C15—C14118.29 (14)
C2—C3—C7120.96 (14)C16—C15—H15120.9
C4—C3—C7120.72 (14)C14—C15—H15120.9
C5—C4—C3120.83 (15)C15—C16—C11121.81 (15)
C5—C4—H4119.6C15—C16—H16119.1
C3—C4—H4119.6C11—C16—H16119.1
C6—C5—C4120.49 (15)N1—C17—C9114.27 (12)
C6—C5—H5119.8N1—C17—H17A108.7
C4—C5—H5119.8C9—C17—H17A108.7
C5—C6—C1119.82 (15)N1—C17—H17B108.7
C5—C6—H6120.1C9—C17—H17B108.7
C1—C6—H6120.1H17A—C17—H17B107.6
C3—C7—H7A109.5N1—C18—C19133.41 (14)
C3—C7—H7B109.5N1—C18—C23104.14 (14)
H7A—C7—H7B109.5C19—C18—C23122.41 (15)
C3—C7—H7C109.5C20—C19—C18116.44 (15)
H7A—C7—H7C109.5C20—C19—H19121.8
H7B—C7—H7C109.5C18—C19—H19121.8
O1—C8—C1122.46 (14)C19—C20—C21121.62 (17)
O1—C8—C9119.18 (14)C19—C20—H20119.2
C1—C8—C9118.34 (13)C21—C20—H20119.2
O2—C9—C17106.50 (11)C22—C21—C20121.75 (16)
O2—C9—C8109.41 (12)C22—C21—H21119.1
C17—C9—C8112.67 (12)C20—C21—H21119.1
O2—C9—H9109.4C21—C22—C23117.64 (15)
C17—C9—H9109.4C21—C22—H22121.2
C8—C9—H9109.4C23—C22—H22121.2
O3—C10—O2123.50 (15)N3—C23—C18108.66 (14)
O3—C10—C11126.53 (14)N3—C23—C22131.17 (14)
O2—C10—C11109.96 (12)C18—C23—C22120.13 (15)
C18—N1—N2—N31.08 (16)C10—C11—C12—Cl1−2.4 (2)
C17—N1—N2—N3171.98 (12)C11—C12—C13—C14−1.6 (2)
N1—N2—N3—C23−1.23 (16)Cl1—C12—C13—C14−178.78 (11)
C6—C1—C2—C31.6 (2)C12—C13—C14—C151.5 (2)
C8—C1—C2—C3−177.02 (13)C12—C13—C14—Cl2−179.24 (11)
C1—C2—C3—C4−0.6 (2)C13—C14—C15—C16−0.3 (2)
C1—C2—C3—C7179.50 (13)Cl2—C14—C15—C16−179.58 (11)
C2—C3—C4—C5−1.2 (2)C14—C15—C16—C11−0.8 (2)
C7—C3—C4—C5178.73 (13)C12—C11—C16—C150.7 (2)
C3—C4—C5—C61.9 (2)C10—C11—C16—C15−179.33 (13)
C4—C5—C6—C1−0.9 (2)C18—N1—C17—C9−77.26 (19)
C2—C1—C6—C5−0.9 (2)N2—N1—C17—C9114.04 (14)
C8—C1—C6—C5177.82 (13)O2—C9—C17—N174.44 (15)
C2—C1—C8—O1162.53 (14)C8—C9—C17—N1−45.52 (17)
C6—C1—C8—O1−16.1 (2)N2—N1—C18—C19177.33 (15)
C2—C1—C8—C9−18.9 (2)C17—N1—C18—C197.8 (3)
C6—C1—C8—C9162.47 (13)N2—N1—C18—C23−0.46 (16)
C10—O2—C9—C17162.00 (12)C17—N1—C18—C23−169.96 (14)
C10—O2—C9—C8−75.96 (15)N1—C18—C19—C20−177.49 (16)
O1—C8—C9—O2−7.23 (18)C23—C18—C19—C200.0 (2)
C1—C8—C9—O2174.12 (11)C18—C19—C20—C210.5 (2)
O1—C8—C9—C17111.04 (15)C19—C20—C21—C22−0.6 (3)
C1—C8—C9—C17−67.61 (17)C20—C21—C22—C230.2 (3)
C9—O2—C10—O3−1.8 (2)N2—N3—C23—C180.94 (17)
C9—O2—C10—C11177.09 (12)N2—N3—C23—C22−176.75 (16)
O3—C10—C11—C16130.70 (17)N1—C18—C23—N3−0.27 (17)
O2—C10—C11—C16−48.10 (18)C19—C18—C23—N3−178.38 (13)
O3—C10—C11—C12−49.3 (2)N1—C18—C23—C22177.72 (14)
O2—C10—C11—C12131.91 (14)C19—C18—C23—C22−0.4 (2)
C16—C11—C12—C130.5 (2)C21—C22—C23—N3177.76 (16)
C10—C11—C12—C13−179.47 (13)C21—C22—C23—C180.3 (2)
C16—C11—C12—Cl1177.60 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.353.263 (2)168
C4—H4···Cg1ii0.932.863.4645 (19)124

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2721).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett.7, 475–477. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography