PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o778.
Published online 2008 April 2. doi:  10.1107/S1600536808008180
PMCID: PMC2961102

5,6-Dichloro-2-(2-hydroxy­phen­yl)­iso­indoline-1,3-dione

Abstract

In the mol­ecule of the title compound, C14H7Cl2NO3, the phthalimide ring system is virtually planar, with a dihedral angle between the fused five- and six-membered rings of 4.02 (3)°. In the crystal structure, inter­molecular C—H(...)O and O—H(...)O hydrogen bonds and C—Cl(...)O close contacts [Cl(...)O = 3.0123 (13) Å and C—Cl(...)O = 171.14 (7)°] link the mol­ecules, generating R 2 2(16), R 4 2(19) and R 4 4(22) ring motifs by C(6) chains to form a three-dimensional network. A weak π–π inter­action between the six-membered rings of the phthalimide ring systems further stabilizes the structure, with a centroid–centroid distance of 3.666 (3) Å and an interplanar separation of 3.568 Å.

Related literature

For general background, see: Chapman et al. (1979 [triangle]); Hall et al. (1983 [triangle], 1987 [triangle]); Srivastava et al. (2001 [triangle]); Cechinel et al. (2003 [triangle]); Abdel-Hafez (2004 [triangle]); Antunes et al. (2003 [triangle]); Sena et al. (2007 [triangle]). For ring motif details, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o778-scheme1.jpg

Experimental

Crystal data

  • C14H7Cl2NO3
  • M r = 308.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o778-efi9.jpg
  • a = 7.5993 (2) Å
  • b = 19.4088 (5) Å
  • c = 9.5086 (3) Å
  • β = 110.842 (2)°
  • V = 1310.68 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 296 K
  • 0.63 × 0.43 × 0.24 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.759, T max = 0.881
  • 20050 measured reflections
  • 2783 independent reflections
  • 2341 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.096
  • S = 1.04
  • 2783 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808008180/hk2440sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008180/hk2440Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Phthalimide derivatives have been gaining considerable interest since 1979, when Chapman et al. tested the hypolipidemic activity of 23 N-substituted phthalimide derivatives (Chapman et al., 1979). Later on, Hall and co-workers reported the antihyperlipidemic activity of phthalimide analogs in rodents and also the same activity was found by the administration of ortho-(N-phthalimido) acetophenone in sprague dawley rats (Hall et al., 1983; 1987). In 2001, Srivastava et al. reported hypolipidemic activity in α-D-mannopyranosides containing phthalimidomethyl function as aglycone (Srivastava et al., 2001). There are other interesting biological aspects of these compounds which have been reviewed in 2003 (Cechinel et al., 2003). A recent paper cites the synthesis and anticonvulsant behavior of N-substituted phthalimides (Abdel-Hafez, 2004). Besides, certain phthalimide derivatives are synthetically important, and can be transformed to other useful products (Antunes et al., 2003). In 2007, Sena et al. prepared ten N-arylaminomethyl-arylaminomethyl- and two [1,2,4-triazol-3- and 4-yl]phthalimides that these imides are potential candidates for biological evaluations (Sena et al., 2007). In view of the importance of the N-arylphthalimides, we herein report the crystal structure of the title compound, (I).

The molecule of (I), (Fig. 1), is built up from a phthalimide unit connected to a o-hydroxyphenyl group through a nitrogen atom. Rings A (C2-C7), B (C1/C2/C7/C8/N1) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 4.02 (3)°, A/C = 75.55 (3)° and B/C = 75.13 (3)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 75.37 (3)°.

In the crystal structure, intermolecular C-H···O and O-H···O hydrogen bonds (Table 1) and C-Cl···O close contacts [Cl2i···O1ii = 3.0123 (13) Å and C5-Cl2i···O1ii = 171.14 (7)°; symmetry codes: (i) x, 3/2 - y, z - 1/2 and (ii) x + 1, 3/2 - y, z + 1/2] link the molecules, generating R22(16) (Fig. 3), R42(19) (Fig. 4) and R44(22) (Fig. 5) ring motifs by C(6) chains (Fig. 2) (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure. A weak π···π interaction between the A rings, at x, y, z and 1 - x, 1 - y, 2 - z, further stabilizes the structure, with a centroid-centroid distance of 3.666 (3) Å and plane-plane separation of 3.568 Å.

Experimental

A mixture of 4,5-dichlorophthalic acid (1.175 g, 5 mmol) and 2-aminophenol (0.545 g, 20 mmol) in DMF (1.5 ml) was heated at boiling temperature for 15 min, and then ethanol (50 ml, 95%) was added. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the mixture at room temperature (yield; 80%, m.p. 546-548 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of (I), showing the formation of C(6) chain [symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
Fig. 3.
A partial packing diagram of (I), showing the formation of centro- symmetric R22(16) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry code: (i) x + 1/2, 1 - y, 1 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity. ...
Fig. 4.
A partial packing diagram of (I), showing the formation of R22(16) and R42(19) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x + 1/2, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) x - 1, y, z]. H atoms not involved in hydrogen ...
Fig. 5.
A partial packing diagram of (I), showing the formation of R44(22) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) x + 1, 3/2 - y, z + 1/2; (iii) x, 3/2 - y, z + 1/2].

Crystal data

C14H7Cl2NO3F000 = 624
Mr = 308.11Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20050 reflections
a = 7.5993 (2) Åθ = 2.1–27.2º
b = 19.4088 (5) ŵ = 0.50 mm1
c = 9.5086 (3) ÅT = 296 K
β = 110.842 (2)ºPrism, light yellow
V = 1310.68 (7) Å30.63 × 0.43 × 0.24 mm
Z = 4

Data collection

Stoe IPDSII diffractometer2783 independent reflections
Monochromator: plane graphite2341 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.057
T = 296 Kθmax = 26.7º
w–scan rotation methodθmin = 2.1º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −9→9
Tmin = 0.759, Tmax = 0.881k = −24→24
20050 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2555P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2783 reflectionsΔρmax = 0.21 e Å3
182 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.80274 (8)0.37446 (3)1.02115 (6)0.07009 (18)
Cl20.94040 (7)0.51106 (3)1.20351 (5)0.06418 (17)
O10.26937 (18)0.49684 (6)0.49490 (13)0.0517 (3)
O20.47116 (19)0.69592 (7)0.75853 (16)0.0587 (3)
O30.40599 (18)0.69007 (7)0.39975 (18)0.0624 (4)
H3A0.42090.72460.35540.094*
N10.33154 (18)0.60578 (7)0.60028 (15)0.0420 (3)
C10.3563 (2)0.53405 (8)0.59612 (17)0.0398 (3)
C20.5079 (2)0.51681 (8)0.74085 (17)0.0392 (3)
C30.5789 (2)0.45386 (9)0.79893 (18)0.0458 (4)
H30.53890.41350.74400.055*
C40.7133 (2)0.45279 (10)0.94342 (19)0.0471 (4)
C50.7747 (2)0.51343 (10)1.02414 (18)0.0480 (4)
C60.7042 (2)0.57666 (10)0.96318 (18)0.0482 (4)
H60.74630.61731.01620.058*
C70.5688 (2)0.57720 (9)0.82043 (17)0.0411 (3)
C80.4593 (2)0.63491 (9)0.73015 (19)0.0433 (4)
C90.1835 (2)0.64372 (8)0.49155 (18)0.0424 (4)
C100.2248 (2)0.68665 (9)0.3911 (2)0.0467 (4)
C110.0805 (3)0.72369 (10)0.2877 (2)0.0589 (5)
H110.10580.75220.21850.071*
C12−0.1002 (3)0.71844 (11)0.2873 (3)0.0682 (6)
H12−0.19620.74400.21870.082*
C13−0.1400 (3)0.67573 (12)0.3875 (3)0.0683 (6)
H13−0.26250.67240.38640.082*
C140.0020 (3)0.63797 (11)0.4894 (2)0.0562 (5)
H14−0.02470.60870.55650.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0715 (3)0.0663 (3)0.0640 (3)0.0148 (2)0.0136 (2)0.0208 (2)
Cl20.0489 (2)0.0998 (4)0.0362 (2)0.0005 (2)0.00566 (17)0.0018 (2)
O10.0567 (7)0.0453 (7)0.0417 (6)−0.0052 (5)0.0037 (5)−0.0066 (5)
O20.0618 (8)0.0423 (7)0.0678 (8)−0.0033 (6)0.0181 (6)−0.0142 (6)
O30.0524 (7)0.0550 (8)0.0860 (10)0.0091 (6)0.0323 (7)0.0242 (7)
N10.0434 (7)0.0367 (7)0.0412 (7)−0.0020 (5)0.0095 (6)−0.0002 (5)
C10.0419 (8)0.0395 (8)0.0372 (8)−0.0037 (6)0.0131 (6)−0.0015 (6)
C20.0397 (7)0.0433 (8)0.0339 (7)−0.0042 (6)0.0122 (6)−0.0022 (6)
C30.0488 (9)0.0427 (9)0.0434 (8)−0.0011 (7)0.0134 (7)−0.0002 (7)
C40.0448 (8)0.0557 (10)0.0418 (8)0.0044 (7)0.0165 (7)0.0089 (7)
C50.0398 (8)0.0694 (12)0.0341 (7)−0.0010 (8)0.0122 (6)−0.0010 (8)
C60.0443 (8)0.0584 (11)0.0391 (8)−0.0062 (7)0.0114 (7)−0.0101 (7)
C70.0399 (8)0.0443 (9)0.0388 (8)−0.0035 (6)0.0136 (6)−0.0057 (6)
C80.0420 (8)0.0426 (9)0.0453 (8)−0.0053 (6)0.0155 (7)−0.0073 (7)
C90.0401 (8)0.0377 (8)0.0450 (8)0.0004 (6)0.0096 (7)−0.0021 (6)
C100.0447 (8)0.0387 (8)0.0551 (10)0.0038 (7)0.0160 (7)0.0014 (7)
C110.0621 (11)0.0437 (10)0.0633 (11)0.0079 (8)0.0129 (9)0.0098 (8)
C120.0504 (11)0.0565 (12)0.0786 (14)0.0129 (9)−0.0007 (10)−0.0018 (10)
C130.0374 (9)0.0718 (13)0.0878 (15)−0.0009 (9)0.0126 (9)−0.0096 (12)
C140.0462 (9)0.0581 (11)0.0640 (11)−0.0077 (8)0.0191 (8)−0.0053 (9)

Geometric parameters (Å, °)

O3—H3A0.8200C8—O21.211 (2)
C1—O11.1967 (19)C8—N11.391 (2)
C1—N11.407 (2)C9—C141.376 (2)
C1—C21.485 (2)C9—C101.385 (2)
C2—C31.370 (2)C9—N11.431 (2)
C2—C71.382 (2)C10—O31.351 (2)
C3—C41.390 (2)C10—C111.385 (2)
C3—H30.9300C11—C121.375 (3)
C4—C51.392 (3)C11—H110.9300
C4—Cl11.7213 (18)C12—C131.375 (3)
C5—C61.381 (3)C12—H120.9300
C5—Cl21.7229 (17)C13—C141.377 (3)
C6—C71.381 (2)C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.475 (2)
C10—O3—H3A109.5C6—C7—C8130.28 (15)
C8—N1—C1111.65 (13)C2—C7—C8108.41 (14)
C8—N1—C9123.59 (13)O2—C8—N1124.64 (16)
C1—N1—C9124.56 (13)O2—C8—C7129.15 (16)
O1—C1—N1125.34 (15)N1—C8—C7106.20 (13)
O1—C1—C2129.33 (15)C14—C9—C10120.68 (16)
N1—C1—C2105.33 (13)C14—C9—N1119.67 (16)
C3—C2—C7121.90 (15)C10—C9—N1119.64 (14)
C3—C2—C1129.71 (15)O3—C10—C11123.37 (17)
C7—C2—C1108.32 (14)O3—C10—C9117.63 (15)
C2—C3—C4117.19 (16)C11—C10—C9119.00 (16)
C2—C3—H3121.4C12—C11—C10120.09 (19)
C4—C3—H3121.4C12—C11—H11120.0
C3—C4—C5121.12 (16)C10—C11—H11120.0
C3—C4—Cl1118.46 (14)C13—C12—C11120.52 (18)
C5—C4—Cl1120.42 (13)C13—C12—H12119.7
C6—C5—C4121.06 (15)C11—C12—H12119.7
C6—C5—Cl2118.48 (14)C12—C13—C14119.85 (18)
C4—C5—Cl2120.46 (14)C12—C13—H13120.1
C7—C6—C5117.47 (16)C14—C13—H13120.1
C7—C6—H6121.3C9—C14—C13119.84 (19)
C5—C6—H6121.3C9—C14—H14120.1
C6—C7—C2121.24 (16)C13—C14—H14120.1
O1—C1—C2—C3−4.3 (3)C14—C9—C10—O3179.76 (17)
N1—C1—C2—C3175.38 (16)N1—C9—C10—O30.7 (2)
O1—C1—C2—C7178.66 (16)C14—C9—C10—C11−0.2 (3)
N1—C1—C2—C7−1.70 (17)N1—C9—C10—C11−179.21 (16)
C7—C2—C3—C41.2 (2)O3—C10—C11—C12−178.91 (19)
C1—C2—C3—C4−175.57 (16)C9—C10—C11—C121.0 (3)
C2—C3—C4—C5−1.0 (3)C10—C11—C12—C13−1.0 (3)
C2—C3—C4—Cl1178.97 (12)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.0 (3)C10—C9—C14—C13−0.7 (3)
Cl1—C4—C5—C6179.98 (13)N1—C9—C14—C13178.34 (17)
C3—C4—C5—Cl2179.64 (13)C12—C13—C14—C90.7 (3)
Cl1—C4—C5—Cl2−0.3 (2)O2—C8—N1—C1177.64 (16)
C4—C5—C6—C70.9 (2)C7—C8—N1—C1−3.01 (17)
Cl2—C5—C6—C7−178.74 (13)O2—C8—N1—C9−7.3 (3)
C5—C6—C7—C2−0.8 (2)C7—C8—N1—C9172.01 (14)
C5—C6—C7—C8175.66 (16)O1—C1—N1—C8−177.39 (15)
C3—C2—C7—C6−0.3 (2)C2—C1—N1—C82.95 (17)
C1—C2—C7—C6177.09 (15)O1—C1—N1—C97.6 (3)
C3—C2—C7—C8−177.42 (15)C2—C1—N1—C9−172.02 (14)
C1—C2—C7—C8−0.07 (17)C14—C9—N1—C8−102.12 (19)
C6—C7—C8—O24.3 (3)C10—C9—N1—C876.9 (2)
C2—C7—C8—O2−178.86 (17)C14—C9—N1—C172.3 (2)
C6—C7—C8—N1−174.99 (17)C10—C9—N1—C1−108.70 (18)
C2—C7—C8—N11.84 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.902.7235 (18)177
C3—H3···O3ii0.932.553.397 (2)152
C13—H13···O3iii0.932.593.505 (2)168

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2440).

References

  • Abdel-Hafez, A. A. M. (2004). Arch. Pharm. Res.27, 495–501. [PubMed]
  • Antunes, R., Batista, H., Srivastava, R. M., Thomas, G., Araújo, C. C., Longo, R. L., Magalhães, H., Leão, M. B. C. & Pavão, A. C. (2003). J. Mol. Struct.660, 1–13.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cechinel, V., de Campos, F., Correa, R., Yunes, R. A. & Nunes, R. J. (2003). Quím. Nova, 26, 230–241.
  • Chapman, J. M., Cocolas, G. H. & Hall, I. H. (1979). J. Med. Chem.22, 1399–1402. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hall, I. H., Reynolds, D. J., Wong, O. T., Oswald, C. B. & Murthy, A. R. K. (1987). Pharm. Res.4, 472–479. [PubMed]
  • Hall, I. H., Voorstad, P. J., Chapman, J. M. & Cocolas, G. H. (1983). J. Pharm. Sci.72, 845–851. [PubMed]
  • Sena, V. L. M., Srivastava, M. R., de Simone, C. A., da Cruz Gonçalves, S. M., Silva, R. O. & Pereira, M. A. (2007). J. Braz. Chem. Soc.18, 1224–1234.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srivastava, R. M., Oliveira, F. J. S., da Silva, L. P., de Freitas Filho, J. R., Oliveira, S. P. & Lima, V. L. M. (2001). Carbohydr. Res.332, 335–340. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography