PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m618.
Published online 2008 April 2. doi:  10.1107/S1600536808002687
PMCID: PMC2961100

Poly[diaqua-μ2-oxalato-di-μ2-pyrimidine-2-carboxyl­ato-dimanganese(II)]

Abstract

In the title compound, [Mn2(C2O4)(C5H3N2O2)2(H2O)2]n, the MnII atom exhibits a distorted octa­hedral coordination geometry, with the centrosymmetric oxalate anion and the monoanionic pyrimidine-2-carboxyl­ate ligands generating a two-dimensional honeycomb network with a (6,3)-topology.

Related literature

For the preparation of 2-cyano­pyrimidine, see: Rodríguez-Diéguez, Salinas-Castillo et al. (2007 [triangle]). For related literature, see: Rodríguez-Diéguez, Cano et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m618-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C2O4)(C5H3N2O2)2(H2O)2]
  • M r = 480.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m618-efi1.jpg
  • a = 7.5447 (7) Å
  • b = 11.1944 (11) Å
  • c = 9.7259 (10) Å
  • β = 102.4220 (10)°
  • V = 802.20 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.64 mm−1
  • T = 150 (2) K
  • 0.22 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.714, T max = 0.773 (expected range = 0.665–0.720)
  • 5847 measured reflections
  • 1495 independent reflections
  • 1389 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.062
  • S = 1.11
  • 1495 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002687/su2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002687/su2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from MEC Spain (project No. CTQ2005/0935) is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound constitutes a new member of a series of honeycomb type compounds previously reported by us (Rodríguez-Diéguez, Cano et al., 2007).

The asymmetric unit of the title compound is illustrated in Fig. 1. The Mn(II) atom exhibits a distorted octahedral coordination geometry built by one pyrimidine-2-carboxylato ligand, half of an oxalic acid ligand and one water molecule. The compound can be described by Mn(pyrimidine-2-carboxylato) chains linked by oxalate ligands to obtain a bidimensional coordination polymer. Each Mn(II) is connected to three Mn atoms through two pyrimidine-2-carboxylato ligands and one oxalate ligand, generating a two-dimensional honeycomb network with a (6,3) topology (Fig. 2). The shortest perpendicular distance between symmetry related pyrimidine rings is ca 3.41 Å.

Experimental

The multitopic bridging ligand 2-carboxy-pyrimidine (H-pymca) was prepared by basic hydrolysis of 2-cyanopyrimidine with KOH and further neutralization with 2 N HCl. The title compound was obtained by the reaction of a mixture of two solutions. The first contained pyrimidine-2-carboxylato (17.1 mg) and MnCl2.4(H2O) (8.67 mg) in water/MeOH (10 ml). The second was formed by addition of MnCl2.4(H2O) (8.67 mg) to a solution of sodium oxalate (9.23 mg) in water (10 ml). These two solutions were then mixed and stirred for 2 h to give a pale-yellow solution. After standing at room temperature for several days prismatic yellow crystals appeared.

Refinement

The water H atoms were located in a difference Fourier map and refined as riding atoms with O—H = 0.77 and 0.80 Å and Uiso(H) = 1.2Ueq(O). The pyrimidine H atoms were positioned geometrically and treated as riding atoms with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the asymmetric unit of [Mn2(pymca)2(ox)(H2O)2]n, showing the atom labels. Thermal ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radii.
Fig. 2.
A view down the a axis of the crystal structure of [Mn2(pymca)2(ox)(H2O)2]n, showing the environment of the manganese atoms and the bidimensional (6,3) net topology. The H atoms have been omitted for clarity.

Crystal data

[Mn2(C2O4)(C5H3N2O2)2(H2O)2]F000 = 480
Mr = 480.12Dx = 1.988 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3384 reflections
a = 7.5447 (7) Åθ = 2.8–28.9º
b = 11.1944 (11) ŵ = 1.64 mm1
c = 9.7259 (10) ÅT = 150 (2) K
β = 102.4220 (10)ºPrismatic, yellow
V = 802.20 (14) Å30.22 × 0.21 × 0.20 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer1389 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 150(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −9→9
Tmin = 0.714, Tmax = 0.774k = −13→13
5847 measured reflectionsl = −11→11
1495 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062  w = 1/[σ2(Fo2) + (0.0274P)2 + 0.6516P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1495 reflectionsΔρmax = 0.41 e Å3
127 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.22294 (4)0.67224 (3)0.51301 (3)0.01810 (12)
N10.2376 (2)0.87496 (16)0.49706 (17)0.0170 (4)
C20.1555 (3)0.94939 (19)0.3937 (2)0.0224 (5)
H20.08500.91740.31170.027*
C30.1735 (3)1.07187 (19)0.4065 (2)0.0230 (5)
H30.11641.12300.33530.028*
C40.2805 (3)1.1150 (2)0.5301 (2)0.0229 (5)
H40.29291.19720.54280.027*
N50.3670 (2)1.04205 (16)0.63259 (18)0.0196 (4)
C60.3405 (3)0.92559 (18)0.6111 (2)0.0166 (4)
C70.4354 (3)0.83993 (18)0.7255 (2)0.0182 (4)
O80.3827 (2)0.73395 (13)0.71406 (16)0.0251 (4)
O90.5576 (2)0.88282 (13)0.81900 (15)0.0224 (3)
O1B0.4755 (2)0.64691 (13)0.43885 (16)0.0230 (3)
O2B0.30121 (19)0.48353 (13)0.56335 (16)0.0217 (3)
C3B0.5504 (3)0.54766 (18)0.4641 (2)0.0185 (4)
O1W−0.0119 (2)0.64879 (13)0.60530 (15)0.0219 (3)
H2WB−0.08480.60910.55230.026*
H1WA0.01670.61920.67780.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.01820 (19)0.01263 (18)0.01991 (19)0.00050 (12)−0.00384 (13)−0.00014 (12)
N10.0170 (9)0.0150 (9)0.0171 (9)0.0001 (7)−0.0008 (7)−0.0001 (6)
C20.0235 (11)0.0219 (11)0.0194 (10)−0.0003 (9)−0.0009 (9)0.0000 (9)
C30.0250 (11)0.0198 (11)0.0229 (11)0.0005 (9)0.0024 (9)0.0033 (9)
C40.0259 (11)0.0165 (11)0.0257 (11)−0.0010 (9)0.0044 (9)0.0013 (9)
N50.0219 (9)0.0166 (9)0.0187 (9)−0.0014 (7)0.0007 (7)−0.0005 (7)
C60.0162 (10)0.0162 (10)0.0170 (10)0.0002 (8)0.0026 (8)−0.0002 (8)
C70.0185 (10)0.0184 (11)0.0167 (10)0.0026 (8)0.0016 (8)−0.0003 (8)
O80.0297 (9)0.0157 (8)0.0241 (8)−0.0014 (6)−0.0074 (7)0.0027 (6)
O90.0222 (8)0.0211 (8)0.0195 (8)−0.0023 (6)−0.0054 (6)0.0001 (6)
O1B0.0223 (8)0.0136 (7)0.0316 (8)0.0020 (6)0.0028 (7)0.0050 (6)
O2B0.0188 (7)0.0163 (7)0.0282 (8)0.0010 (6)0.0009 (6)0.0016 (6)
C3B0.0172 (10)0.0151 (10)0.0191 (10)−0.0009 (8)−0.0055 (8)−0.0017 (8)
O1W0.0235 (8)0.0196 (8)0.0193 (7)−0.0002 (6)−0.0028 (6)0.0028 (6)

Geometric parameters (Å, °)

Mn1—O9i2.1175 (14)C4—H40.9300
Mn1—O1W2.1677 (15)N5—C61.329 (3)
Mn1—O82.1771 (15)C6—C71.526 (3)
Mn1—O1B2.1958 (16)C7—O91.244 (3)
Mn1—O2B2.2196 (15)C7—O81.248 (3)
Mn1—N12.2790 (18)O9—Mn1ii2.1175 (14)
N1—C61.336 (3)O1B—C3B1.247 (2)
N1—C21.349 (3)O2B—C3Biii1.255 (3)
C2—C31.381 (3)C3B—O2Biii1.255 (3)
C2—H20.9300C3B—C3Biii1.560 (4)
C3—C41.383 (3)O1W—H2WB0.8027
C3—H30.9300O1W—H1WA0.7669
C4—N51.344 (3)
O9i—Mn1—O1W87.50 (6)C2—C3—H3121.5
O9i—Mn1—O8177.38 (6)C4—C3—H3121.5
O1W—Mn1—O890.61 (6)N5—C4—C3122.1 (2)
O9i—Mn1—O1B93.21 (6)N5—C4—H4118.9
O1W—Mn1—O1B164.73 (6)C3—C4—H4118.9
O8—Mn1—O1B89.08 (6)C6—N5—C4116.55 (18)
O9i—Mn1—O2B89.85 (6)N5—C6—N1126.02 (19)
O1W—Mn1—O2B89.76 (6)N5—C6—C7118.09 (18)
O8—Mn1—O2B91.96 (5)N1—C6—C7115.90 (18)
O1B—Mn1—O2B74.99 (5)O9—C7—O8127.13 (19)
O9i—Mn1—N1104.89 (6)O9—C7—C6116.64 (18)
O1W—Mn1—N1101.81 (6)O8—C7—C6116.22 (18)
O8—Mn1—N173.72 (6)C7—O8—Mn1119.06 (13)
O1B—Mn1—N192.76 (6)C7—O9—Mn1ii137.83 (14)
O2B—Mn1—N1161.49 (6)C3B—O1B—Mn1116.05 (14)
C6—N1—C2116.64 (18)C3Biii—O2B—Mn1115.15 (13)
C6—N1—Mn1113.21 (13)O1B—C3B—O2Biii126.4 (2)
C2—N1—Mn1130.12 (14)O1B—C3B—C3Biii117.0 (2)
N1—C2—C3121.7 (2)O2Biii—C3B—C3Biii116.6 (2)
N1—C2—H2119.2Mn1—O1W—H2WB108.0
C3—C2—H2119.2Mn1—O1W—H1WA109.9
C2—C3—C4117.0 (2)H2WB—O1W—H1WA111.7

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2WB···O2Biv0.802.052.847 (2)170
O1W—H1WA···N5v0.772.052.815 (2)171

Symmetry codes: (iv) −x, −y+1, −z+1; (v) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2042).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. pp. 2503–2510. [PubMed]
  • Rodríguez-Diéguez, A., Salinas-Castillo, A., Galli, S., Masciocchi, N., Gutiérrez-Zorrilla, J. M., Vitoria, P. & Colacio, E. (2007). Dalton Trans. pp. 1821–1828. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography