PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m665–m666.
Published online 2008 April 16. doi:  10.1107/S1600536808009756
PMCID: PMC2961096

Di-μ-nicotinato-κ2 N:O2 O:N-bis­[aqua­(ethyl­enediamine-κ2 N,N′)(nicotinato-κN)cadmium(II)] dihydrate

Abstract

The dinuclear mol­ecule of the title compound, [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O, lies on an inversion centre and forms 12-membered (CdNC3O)2 metallacycles with the two Cd2+ ions bridged by two nicotinate ligands. Both Cd2+ ions display coordination polyhedra with a distorted octa­hedral geometry that includes two pyridine N atoms from bridging and terminal nicotinate anions, two amine N atoms from chelating ethylene­diamine ligands, carboxylate O atoms from bridging nicotinate anions and water O atoms. Inter­molecular O—H(...)O and N—H(...)O hydrogen bonds result in the formation of a three-dimensional network, and π–π stacking inter­actions are observed between symmetry-related pyridine rings of bridging as well as terminal nicotinate anions (the centroid–centroid distances are 3.59 and 3.69 Å, respectively, and the distances between parallel planes of the stacked pyridine rings are 3.53 and 3.43 Å, respectively). The two methylene groups of the ethylene­diamine ligand are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Chen (2003 [triangle]); Clegg et al. (1995 [triangle]); Evans & Lin (2001 [triangle]); Janiak (2000 [triangle]); Kang et al. (2007 [triangle]); Liang & Li (2005 [triangle]); Lu & Kohler (2002 [triangle]); Lu et al. (2007 [triangle]); Luo et al. (2004 [triangle]); Song et al. (2006 [triangle]); Xian et al. (2007 [triangle]); Zhang et al. (1996 [triangle]); Zhang et al. (2004 [triangle]). For related structures, see: Ayyappan et al. (2001 [triangle]); Abu-Youssef (2005 [triangle]); Chen et al. (2001 [triangle], 2008 [triangle]); Lin et al. (2000 [triangle]); Liu et al. (2005 [triangle]); Madalan et al. (2005 [triangle]); Wang et al. (2002 [triangle]); Wasson & LaDuca (2007 [triangle]); Wu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m665-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O
  • M r = 905.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m665-efi1.jpg
  • a = 7.678 (1) Å
  • b = 10.364 (1) Å
  • c = 11.984 (2) Å
  • α = 101.080 (1)°
  • β = 93.60 (1)°
  • γ = 109.63 (1)°
  • V = 873.1 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 294 (2) K
  • 0.35 × 0.30 × 0.20 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: ψ scan (XEMP; Siemens, 1994 [triangle]) T min = 0.652, T max = 0.776
  • 6118 measured reflections
  • 5071 independent reflections
  • 4491 reflections with I > 2σ(I)
  • R int = 0.055
  • 3 standard reflections every 97 reflections intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.076
  • S = 1.06
  • 5071 reflections
  • 245 parameters
  • 21 restraints
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: XSCANS (Siemens, 1994 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009756/zl2107sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009756/zl2107Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08) for financial support.

supplementary crystallographic information

Comment

Several CdII coordination polymers that contain bridging 3-pyridylcarboxylate (nicotinate) ligands have been reported recently (Abu-Youssef, 2005; Evans & Lin, 2001; Chen, (2003); Clegg et al., 1995; Kang et al., 2007; Liang & Li, 2005; Lu & Kohler, 2002; Lu et al., 2007; Song et al., 2006; Xian et al. 2007; Zhang et al., 1996; Zhang et al., 2004). However, if the nicotinate anions are coordinated only as terminal ligands, the possibility of participating in a hydrogen-bonding network originates. As part of our efforts to investigate metal(II) complexes based on pyridine carboxylic acids, we report herein the crystal structure of the title compound, (I).

Figure 1 shows a representative ORTEP diagram for (I). The Cd centers are µ2-bridged by two nicotinate ligands to form a twelve-membered (CdNC3O)2 ring with the Cd···Cdi [symmetry code: (i) -x + 1, -y + 1, -z + 1] distance being 7.355 (1) Å. The two nicotinate ligands bridge two Cd centers through the pyridyl N atom and one of the carboxylate O atoms. The Cd2+ ion has a distorted octahedral coordination formed by the two pyridine N atoms of bridging [Cd–N1i = 2.349 (2) Å] and terminal [Cd–N2 = 2.406 (2) Å] nicotinate anions; the two N atoms of chelating 1,2-ethylenediamine ligands [Cd–N3 = 2.321 (2) Å and Cd–N4 = 2.345 (2) Å], and two O atoms in trans positions, one from the carboxylate group of a µ2-bridging nicotinate ligand [Cd–O1 = 2.325 (2) Å] and one from the coordinated water molecule [Cd–O1W = 2.348 (2) Å].

The structure of (I) can be compared with two dimeric copper(II) complexes with a µ2-bridging nicotinate ligand [Cu(µ2-nic)(dien)]2(nic)2 (II) and [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH (III) [dien is diethylenetriamine] (Chen et al., 2008). Both compounds (II-III) are dimeric complexes, where the nicotinate ligands are bridging two Cu centers to form similar twelve-membered (CuNC3O)2 rings (Table 2). On the other hand, the same (MNC3O)2 [M = Cu, Cd, Ni or Mn] rings are observed in some metal(II) nicotinate based coordination polymers, but the nicotinate ligands are µ3-bridging ones. M···M distances and chromophores for dinuclear and polymeric complexes with twelve-membered (MNC3O)2 rings are compared in Table 2.

The hydrogen-bonding parameters of (I) are listed in Table 1. In the crystal structure, intermolecular O–H···O and N–H···O hydrogen-bonds (Table 1) link the molecules to form a three-dimensional network (Figures 2 and 3). One of the amine H atoms of the 1,2-ethylenediamine ligand forms an intramolecular hydrogen-bond [N3–H3A···O2 or N3–H3C···O2] and partipicates in creation of aan intramolecular metallocyclus with an S(6) pattern (Bernstein et al., 1995) (Figure 2). One O atom and one H atom of each of the uncoordinated water molecules, two amine groups of the 1,2-ethylenediamine ligands and one carboxylate O atom of each of the terminal nicotinate ligands are connected through hydrogen-bonds to rings with a graph set motif of R66(12) (Bernstein et al., 1995) [N4–H4B···O2W or N4–H4D···O2W; N4–H4A···O3iii or N4–H4C···O3iii; and O2W–H4W···O3i, symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z] (Figure 2). The H atoms from the amine groups of the 1,2-ethylenediamine ligand and the H atoms from the coordinated water molecule are connected through hydrogen-bonds to the carboxylate O atoms of the terminal nicotinate ligands [N4–H4A···O3iii or N4–H4C···O3iii; O1W–H1W···O4iii] and these groups create six-membered R22(8) rings (Bernstein et al., 1995) (Figure 2). The remaining hydrogen-bonds from the amine groups of the ethylendiamine ligands are connected to carboxylate O atoms of terminal nicotinate ligands of neighbouring complex molecules [N3–H3B···O4ii or N3–H3D···O4ii, symmetry codes: (ii) -x + 1, -y + 1, -z] (Figure 2). Further intermolecular hydrogen-bonds between uncoordinated water molecules [O2W–H3W···O2Wv, symmetry codes: (v) -x, -y, -z + 1], and between coordinated water molecules and carboxylate O atoms of bridging nicotinate ligands [O1W–H2W···O2iv, symmetry codes: (iv) x + 1, y, z] are shown in Figure 3.

Additional interactions between the pyridine rigs of nicotinate ligands are π-π stacking interactions (Janiak, 2000) between the two adjacent pyridine rings of terminal nicotinate ligands [N2/C8—C12] (πaaii) (Figure 2), and between the two adjacent pyridine rings of bridging nicotinate ligands [N1/C2—C6] (πbbvi) (Figure 3) [symmetry codes: (ii) -x + 1, -y + 1, -z; (vi) -x, -y + 1, -z - 1]. The centroid (Cg) distances Cg···Cg are 3.69 and 3.59 Å, respectively. The distances between parallel planes of the stacked pyridine rings are 3.43 and 3.53 Å, respectively.

Experimental

The title complex was formed in a methanolic solution (30 cm3) of Cd(nicotinate)2.H2O (1.25 mmol) by adding 1,2-ethylenediamine in the molar ratio of 1:1. The resulting solution was left to slowly evaporate at room temperature. Well shaped crystals, suitable for X-ray structure analysis were collected after a few days by filtration and finally dried in vacuo. Anal. Calc.: C, 37.14; H, 4.45; N, 12.37; Cd, 24.83; Found: C, 36.82; H, 4.53; N, 12.30; Cd, 24.65. Selected IR data (KBr) cm-1: 1611 vs,br νas(COO-); 1383 vs,br νs(COO-); 643mδ(pyridine ring in-plane bending); 432mχ(pyridine ring out-of-plane bending).

Refinement

The 1,2-ethylenediamine ligand has orientational disorder [C13A—C14A and C13B—C14B] and the refined site-occupancy factors of both the disordered parts are 0.78 (1) and 0.22 (1), respectively. The disordered parts of the title compounds were restrained using SADI, DELU and SIMU commands (SHELXL97; Sheldrick, 2008). All H atoms of C–H (aromatic, methylene) and N–H (amine) bonds were placed in calculated positions (0.93, 0.97 and 0.89–0.92 Å, respectively); isotropic displaced parameters were fixed (Uiso(H) = 1.2 Uiso(C/N) of C or N atoms to which they were attached) using a riding model. The water H atoms were placed in calculed positions (O–H = 0.82–0.84 Å); isotropic displaced parameters were fixed (Uiso(H) = 1.5 Uiso(O)) of O atoms to which they were attached).

Figures

Fig. 1.
Perspective view of (I), with the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. Bonds in the minor disordered parts are drawn as open-dashed lines.
Fig. 2.
The hydrogen-bonds and πa-πa stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z]
Fig. 3.
The hydrogen-bonds and πb-πb stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x, -y, -z + 1]

Crystal data

[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2OZ = 1
Mr = 905.18F000 = 456
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P1Mo Kα radiation λ = 0.71073 Å
a = 7.6780 (10) ÅCell parameters from 25 reflections
b = 10.3640 (10) Åθ = 2.1–8.9º
c = 11.984 (2) ŵ = 1.29 mm1
α = 101.080 (10)ºT = 294 (2) K
β = 93.600 (10)ºPrism, colourless
γ = 109.630 (10)º0.35 × 0.30 × 0.20 mm
V = 873.1 (2) Å3

Data collection

Siemens P4 diffractometerRint = 0.055
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 1.8º
T = 294(2) Kh = −1→10
2θ/ω scansk = −14→13
Absorption correction: ψ scan(XEMP; Siemens, 1994)l = −16→16
Tmin = 0.652, Tmax = 0.7763 standard reflections
6118 measured reflections every 97 reflections
5071 independent reflections intensity decay: 2.0%
4491 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076  w = 1/[σ2(Fo2) + (0.0307P)2 + 0.1604P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5071 reflectionsΔρmax = 0.57 e Å3
245 parametersΔρmin = −0.62 e Å3
21 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.50747 (2)0.217937 (14)0.263617 (13)0.03264 (6)
O10.3261 (3)0.3353 (2)0.35364 (17)0.0505 (5)
O1W0.7358 (3)0.13999 (17)0.18352 (18)0.0457 (4)
H1W0.71660.05580.16310.069*
H2W0.85050.18950.20050.069*
O20.1020 (3)0.3222 (2)0.21860 (16)0.0471 (4)
O2W0.1968 (6)0.0994 (5)0.4981 (3)0.1256 (15)
H3W0.10500.03140.50550.188*
H4W0.25790.14960.55950.188*
O30.6053 (4)0.8065 (2)0.2856 (2)0.0739 (8)
O40.6980 (4)0.87012 (19)0.12727 (19)0.0619 (6)
N10.2917 (3)0.6858 (2)0.56161 (17)0.0364 (4)
N20.6293 (3)0.41008 (18)0.17134 (17)0.0353 (4)
N30.2678 (3)0.0997 (2)0.11238 (19)0.0429 (4)
H3A0.16970.12390.12650.051*0.780 (10)
H3B0.30710.12250.04760.051*0.780 (10)
H3C0.20020.15320.10620.051*0.220 (10)
H3D0.31920.08630.04790.051*0.220 (10)
N40.3717 (3)−0.0048 (2)0.30277 (19)0.0445 (5)
H4A0.4522−0.05220.29300.053*0.780 (10)
H4B0.35290.00510.37760.053*0.780 (10)
H4C0.4641−0.03460.32760.053*0.220 (10)
H4D0.30250.00060.36000.053*0.220 (10)
C10.2052 (3)0.3777 (2)0.3123 (2)0.0347 (4)
C20.1904 (3)0.5085 (2)0.38534 (19)0.0315 (4)
C30.2937 (3)0.5680 (2)0.4933 (2)0.0357 (4)
H30.36910.52330.51990.043*
C40.1810 (4)0.7494 (2)0.5236 (2)0.0412 (5)
H40.17770.83110.57020.049*
C50.0722 (4)0.6972 (3)0.4178 (2)0.0468 (6)
H5−0.00400.74290.39400.056*
C60.0771 (3)0.5761 (3)0.3470 (2)0.0407 (5)
H60.00580.54050.27490.049*
C70.6597 (4)0.7856 (2)0.1908 (2)0.0428 (5)
C80.6792 (3)0.6441 (2)0.1471 (2)0.0326 (4)
C90.6207 (3)0.5384 (2)0.20765 (19)0.0333 (4)
H90.57370.55760.27610.040*
C100.6977 (3)0.3842 (2)0.0733 (2)0.0386 (5)
H100.70410.29550.04780.046*
C110.7595 (4)0.4825 (3)0.0076 (2)0.0399 (5)
H110.80650.4605−0.06030.048*
C120.7494 (3)0.6147 (2)0.0455 (2)0.0358 (4)
H120.78950.68290.00300.043*
C13A0.2200 (8)−0.0529 (4)0.1059 (4)0.0548 (13)0.780 (10)
H13A0.3186−0.08280.07670.066*0.780 (10)
H13B0.1052−0.10590.05390.066*0.780 (10)
C14A0.1963 (8)−0.0807 (5)0.2237 (4)0.0604 (14)0.780 (10)
H14A0.0978−0.05040.25270.072*0.780 (10)
H14B0.1602−0.18080.21930.072*0.780 (10)
C13B0.1473 (18)−0.0289 (13)0.1436 (17)0.056 (4)0.220 (10)
H13C0.0625−0.09230.07690.067*0.220 (10)
H13D0.0740−0.00520.20190.067*0.220 (10)
C14B0.270 (2)−0.0967 (12)0.1881 (13)0.052 (4)0.220 (10)
H14C0.3580−0.10590.13540.062*0.220 (10)
H14D0.1959−0.18980.19670.062*0.220 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.04196 (9)0.02134 (7)0.03364 (8)0.01255 (6)0.00412 (6)0.00197 (5)
O10.0542 (11)0.0569 (11)0.0438 (9)0.0363 (9)−0.0027 (8)−0.0076 (8)
O1W0.0458 (9)0.0247 (7)0.0671 (12)0.0154 (7)0.0149 (8)0.0040 (7)
O20.0444 (9)0.0463 (9)0.0415 (9)0.0158 (8)−0.0034 (7)−0.0076 (7)
O2W0.162 (4)0.189 (4)0.075 (2)0.125 (3)0.040 (2)0.022 (2)
O30.135 (2)0.0523 (12)0.0625 (14)0.0592 (14)0.0451 (15)0.0202 (11)
O40.1147 (19)0.0276 (8)0.0537 (12)0.0330 (10)0.0270 (12)0.0143 (8)
N10.0429 (10)0.0330 (9)0.0338 (9)0.0176 (8)0.0026 (7)0.0023 (7)
N20.0440 (10)0.0227 (7)0.0409 (10)0.0147 (7)0.0038 (8)0.0067 (7)
N30.0484 (11)0.0411 (10)0.0368 (10)0.0151 (9)0.0021 (8)0.0062 (8)
N40.0578 (13)0.0339 (9)0.0417 (11)0.0138 (9)0.0093 (9)0.0124 (8)
C10.0322 (10)0.0333 (10)0.0352 (10)0.0108 (8)0.0063 (8)0.0012 (8)
C20.0308 (9)0.0300 (9)0.0341 (10)0.0113 (8)0.0082 (8)0.0059 (8)
C30.0391 (11)0.0335 (10)0.0361 (10)0.0182 (9)0.0038 (8)0.0026 (8)
C40.0532 (14)0.0342 (11)0.0413 (12)0.0234 (10)0.0066 (10)0.0060 (9)
C50.0578 (15)0.0456 (13)0.0460 (13)0.0309 (12)0.0013 (11)0.0102 (11)
C60.0422 (12)0.0442 (12)0.0375 (11)0.0198 (10)0.0008 (9)0.0068 (9)
C70.0629 (15)0.0264 (9)0.0439 (12)0.0223 (10)0.0083 (11)0.0071 (9)
C80.0362 (10)0.0228 (8)0.0394 (10)0.0122 (7)0.0018 (8)0.0064 (7)
C90.0402 (11)0.0248 (9)0.0367 (10)0.0141 (8)0.0050 (8)0.0066 (8)
C100.0504 (13)0.0262 (9)0.0410 (11)0.0191 (9)0.0041 (9)0.0028 (8)
C110.0485 (13)0.0355 (11)0.0404 (11)0.0207 (10)0.0128 (9)0.0065 (9)
C120.0399 (11)0.0279 (9)0.0406 (11)0.0112 (8)0.0087 (9)0.0102 (8)
C13A0.069 (3)0.0353 (17)0.0425 (19)0.0009 (17)−0.0001 (18)0.0024 (14)
C14A0.062 (3)0.048 (2)0.052 (2)−0.007 (2)0.006 (2)0.0158 (19)
C13B0.043 (7)0.043 (7)0.063 (10)0.004 (5)−0.002 (6)−0.004 (6)
C14B0.055 (8)0.024 (5)0.064 (9)0.001 (5)0.011 (6)0.003 (5)

Geometric parameters (Å, °)

Cd1—N32.321 (2)N4—H4D0.8980
Cd1—O12.325 (2)C1—C21.509 (3)
Cd1—N42.344 (2)C2—C31.385 (3)
Cd1—O1W2.348 (2)C2—C61.394 (3)
Cd1—N1i2.349 (2)C3—H30.9300
Cd1—N22.406 (2)C4—C51.378 (4)
O1—C11.264 (3)C4—H40.9300
O1W—H1W0.8187C5—C61.387 (3)
O1W—H2W0.8450C5—H50.9300
O2—C11.247 (3)C6—H60.9300
O2W—H3W0.8365C7—C81.519 (3)
O2W—H4W0.8232C8—C121.385 (3)
O3—C71.240 (3)C8—C91.395 (3)
O4—C71.243 (3)C9—H90.9300
N1—C31.339 (3)C10—C111.384 (3)
N1—C41.344 (3)C10—H100.9300
N1—Cd1i2.349 (2)C11—C121.388 (3)
N2—C101.334 (3)C11—H110.9300
N2—C91.343 (3)C12—H120.9300
N3—C13B1.477 (12)C13A—C14A1.504 (6)
N3—C13A1.484 (4)C13A—H13A0.9700
N3—H3A0.8860C13A—H13B0.9700
N3—H3B0.8955C14A—H14A0.9700
N3—H3C0.8870C14A—H14B0.9700
N3—H3D0.8982C13B—C14B1.479 (15)
N4—C14A1.474 (5)C13B—H13C0.9700
N4—C14B1.507 (12)C13B—H13D0.9700
N4—H4A0.9105C14B—H14C0.9700
N4—H4B0.9088C14B—H14D0.9700
N4—H4C0.9180
N3—Cd1—O190.64 (7)O2—C1—C2118.9 (2)
N3—Cd1—N476.38 (8)O1—C1—C2115.1 (2)
O1—Cd1—N4100.83 (9)C3—C2—C6117.3 (2)
N3—Cd1—O1W97.31 (8)C3—C2—C1120.63 (19)
O1—Cd1—O1W169.36 (7)C6—C2—C1122.1 (2)
N4—Cd1—O1W87.95 (7)N1—C3—C2124.0 (2)
N3—Cd1—N1i168.76 (7)N1—C3—H3118.0
O1—Cd1—N1i84.28 (7)C2—C3—H3118.0
N4—Cd1—N1i94.70 (7)N1—C4—C5122.1 (2)
O1W—Cd1—N1i89.07 (7)N1—C4—H4119.0
N3—Cd1—N291.32 (7)C5—C4—H4119.0
O1—Cd1—N288.34 (7)C4—C5—C6119.5 (2)
N4—Cd1—N2164.61 (7)C4—C5—H5120.2
O1W—Cd1—N284.44 (7)C6—C5—H5120.2
N1i—Cd1—N298.52 (7)C5—C6—C2119.1 (2)
C1—O1—Cd1130.80 (16)C5—C6—H6120.4
Cd1—O1W—H1W120.5C2—C6—H6120.4
Cd1—O1W—H2W121.2O3—C7—O4125.6 (2)
H1W—O1W—H2W113.0O3—C7—C8117.7 (2)
H3W—O2W—H4W113.8O4—C7—C8116.7 (2)
C3—N1—C4118.0 (2)C12—C8—C9118.18 (19)
C3—N1—Cd1i119.65 (15)C12—C8—C7121.6 (2)
C4—N1—Cd1i122.28 (16)C9—C8—C7120.2 (2)
C10—N2—C9117.98 (19)N2—C9—C8122.8 (2)
C10—N2—Cd1117.60 (14)N2—C9—H9118.6
C9—N2—Cd1124.23 (16)C8—C9—H9118.6
C13B—N3—Cd1107.2 (6)N2—C10—C11123.4 (2)
C13A—N3—Cd1107.0 (2)N2—C10—H10118.3
C13B—N3—H3A80.3C11—C10—H10118.3
C13A—N3—H3A109.8C10—C11—C12118.3 (2)
Cd1—N3—H3A109.2C10—C11—H11120.8
C13B—N3—H3B135.6C12—C11—H11120.8
C13A—N3—H3B111.4C8—C12—C11119.4 (2)
Cd1—N3—H3B109.0C8—C12—H12120.3
H3A—N3—H3B110.3C11—C12—H12120.3
C13B—N3—H3C107.7N3—C13A—C14A109.3 (4)
C13A—N3—H3C133.5N3—C13A—H13A109.8
Cd1—N3—H3C108.4C14A—C13A—H13A109.8
C13B—N3—H3D115.9N3—C13A—H13B109.8
C13A—N3—H3D86.8C14A—C13A—H13B109.8
Cd1—N3—H3D108.1H13A—C13A—H13B108.3
H3C—N3—H3D109.4N4—C14A—C13A110.5 (4)
C14A—N4—Cd1108.3 (2)N4—C14A—H14A109.6
C14B—N4—Cd1103.7 (6)C13A—C14A—H14A109.6
C14A—N4—H4A110.7N4—C14A—H14B109.6
C14B—N4—H4A85.4C13A—C14A—H14B109.6
Cd1—N4—H4A109.4H14A—C14A—H14B108.1
C14A—N4—H4B112.2N3—C13B—C14B107.7 (12)
C14B—N4—H4B137.7N3—C13B—H13C110.2
Cd1—N4—H4B109.4C14B—C13B—H13C110.2
H4A—N4—H4B106.8N3—C13B—H13D110.2
C14A—N4—H4C131.2C14B—C13B—H13D110.2
C14B—N4—H4C110.1H13C—C13B—H13D108.5
Cd1—N4—H4C109.3C13B—C14B—N4107.3 (12)
C14A—N4—H4D88.0C13B—C14B—H14C110.3
C14B—N4—H4D116.6N4—C14B—H14C110.3
Cd1—N4—H4D109.8C13B—C14B—H14D110.3
H4C—N4—H4D107.1N4—C14B—H14D110.3
O2—C1—O1126.0 (2)H14C—C14B—H14D108.5
N3—Cd1—O1—C1−33.5 (2)O1—C1—C2—C3−4.8 (3)
N4—Cd1—O1—C1−109.7 (2)O2—C1—C2—C6−5.8 (3)
O1W—Cd1—O1—C1105.0 (4)O1—C1—C2—C6173.7 (2)
N1i—Cd1—O1—C1156.5 (2)C4—N1—C3—C20.8 (4)
N2—Cd1—O1—C157.8 (2)Cd1i—N1—C3—C2−175.37 (17)
N3—Cd1—N2—C10−65.68 (18)C6—C2—C3—N1−0.4 (4)
O1—Cd1—N2—C10−156.28 (18)C1—C2—C3—N1178.1 (2)
N4—Cd1—N2—C10−29.2 (4)C3—N1—C4—C5−0.2 (4)
O1W—Cd1—N2—C1031.54 (18)Cd1i—N1—C4—C5175.8 (2)
N1i—Cd1—N2—C10119.76 (17)N1—C4—C5—C6−0.6 (4)
N3—Cd1—N2—C9109.32 (19)C4—C5—C6—C20.9 (4)
O1—Cd1—N2—C918.72 (18)C3—C2—C6—C5−0.4 (4)
N4—Cd1—N2—C9145.8 (3)C1—C2—C6—C5−179.0 (2)
O1W—Cd1—N2—C9−153.46 (19)O3—C7—C8—C12−176.1 (3)
N1i—Cd1—N2—C9−65.24 (19)O4—C7—C8—C124.7 (4)
O1—Cd1—N3—C13B−87.9 (8)O3—C7—C8—C95.8 (4)
N4—Cd1—N3—C13B13.1 (8)O4—C7—C8—C9−173.4 (3)
O1W—Cd1—N3—C13B99.2 (8)C10—N2—C9—C80.3 (3)
N1i—Cd1—N3—C13B−25.0 (9)Cd1—N2—C9—C8−174.71 (16)
N2—Cd1—N3—C13B−176.2 (8)C12—C8—C9—N2−0.2 (3)
O1—Cd1—N3—C13A−121.2 (3)C7—C8—C9—N2178.0 (2)
N4—Cd1—N3—C13A−20.2 (3)C9—N2—C10—C11−0.1 (4)
O1W—Cd1—N3—C13A65.9 (3)Cd1—N2—C10—C11175.22 (19)
N1i—Cd1—N3—C13A−58.3 (5)N2—C10—C11—C12−0.1 (4)
N2—Cd1—N3—C13A150.4 (3)C9—C8—C12—C11−0.1 (3)
N3—Cd1—N4—C14A−10.2 (3)C7—C8—C12—C11−178.2 (2)
O1—Cd1—N4—C14A77.8 (3)C10—C11—C12—C80.2 (4)
O1W—Cd1—N4—C14A−108.2 (3)C13B—N3—C13A—C14A−46.9 (11)
N1i—Cd1—N4—C14A162.9 (3)Cd1—N3—C13A—C14A48.5 (6)
N2—Cd1—N4—C14A−47.9 (5)C14B—N4—C14A—C13A−46.1 (10)
N3—Cd1—N4—C14B20.6 (7)Cd1—N4—C14A—C13A39.8 (6)
O1—Cd1—N4—C14B108.7 (7)N3—C13A—C14A—N4−61.5 (8)
O1W—Cd1—N4—C14B−77.4 (7)C13A—N3—C13B—C14B47.9 (10)
N1i—Cd1—N4—C14B−166.3 (7)Cd1—N3—C13B—C14B−46.7 (16)
N2—Cd1—N4—C14B−17.1 (8)N3—C13B—C14B—N470 (2)
Cd1—O1—C1—O230.5 (4)C14A—N4—C14B—C13B49.7 (10)
Cd1—O1—C1—C2−148.90 (17)Cd1—N4—C14B—C13B−53.2 (15)
O2—C1—C2—C3175.7 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4ii0.821.842.659 (2)174
O1W—H2W···O2iii0.841.932.762 (3)169
O2W—H3W···O2Wiv0.842.253.041 (10)158
O2W—H4W···O3i0.821.972.742 (5)157
N3—H3A···O20.892.373.099 (3)139
N3—H3B···O4v0.902.112.966 (3)160
N3—H3C···O20.892.363.099 (3)141
N3—H3D···O4v0.902.242.966 (3)138
N4—H4A···O3ii0.912.163.054 (3)169
N4—H4B···O2W0.912.222.975 (4)140
N4—H4C···O3ii0.922.263.054 (3)145
N4—H4D···O2W0.902.132.975 (4)157

Symmetry codes: (ii) x, y−1, z; (iii) x+1, y, z; (iv) −x, −y, −z+1; (i) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z.

Table 2 Table 2. Comparative M···M distances (Å) and chromophores for selected dinuclear and polymeric complexes with 12-membered (MNC3O)2 rings

CompoundBonding modeM···MChromophore
Iaµ2-nic-κ2N:O7.355 (1)CdN4O2
IIbµ2-nic-κ2N:O6.904 (2)CuN4O
IIIcµ2-nic-κ2N:O6.972 (2)CuN4O
IVdµ3-nic-κ3N:O:O'7.208 (1)MnN2O4
Veµ3-nic-κ3N:O:O'7.304 (3)CdN2O4
VIfµ3-nic-κ3N:O:O'6.736 (1)CuN3O2
VIIgµ3-nic-κ3N:O:O'6.680 (1)CuN3O2
VIIIhµ3-nic-κ3N:O:O'6.646 (2)NiN2O4
IXiµ3-nic-κ3N:O:O'6.90 (1)NiN2O4
Xjµ3-nic-κ3N:O:O'6.622 (2)NiN2O4
XIkµ3-nic-κ3N:O:O'7.324 (1)MnN2O4
XIIlµ3-nic-κ3N:O:O'6.890 (2)NiN2O4
µ2-nic-κ2N:O7.027 (2)NiN3O3

(a) [Cd(µ2-nic)(nic)(en)(H2O)]2.2H2O (this work); (b) [Cu(µ2-nic)(dien)]2(nic)2 (dien is diethylenetriamine) (Chen et al., 2008); (c) [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH [dien is diethylenetriamine] (Chen et al., 2008); (d) [Mn33-nic)42-N3)2(H2O)2]n (Chen et al., 2001); (e) [Cd33-nic)42-N3)2(H2O)2]n (Abu-Youssef, 2005); (f) [Cu23-nic)2(Me2bipy)2]n.2nClO4 [Me2bipy is 4,4'-dimethyl-2,2'-bipyridine] (Madalan et al., 2005); (g) [Cu23-nic)2(bipy)2]n.2nClO4.2H2O [bipy is 2,2'-bipyridine] (Madalan et al., 2005); (h) [Ni43-nic)42-nic)42-H2O)2]n.2nEtOH.2nH2O (Ayyappan et al., 2001); (i) [Ni43-nic)42-nic)42-H2O)2]n (Wu et al., 2003); (j) [Ni43-nic)42-nic)42-H2O)2]n.2nH2O (Wasson & LaDuca, 2007); (k) [Mn(µ3-nic)2]n (Lin et al., 2000; Wang et al., 2002); (l) [Ni33-nic)22-nic)22-N3)22-Hnic)2]n (Liu et al., 2005).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2107).

References

  • Abu-Youssef, M. A. M. (2005). Polyhedron, 24, 1829–1836.
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Ayyappan, P., Evans, O. R. & Lin, W.-L. (2001). Inorg. Chem.40, 4627–4632. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Chen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. In the press. doi: 10.1007/s11224-007-9256-9.
  • Chen, H.-J. (2003). Acta Cryst. C59, m371–m372. [PubMed]
  • Chen, H.-J., Mao, Z.-W., Gao, S. & Chen, X.-M. (2001). Chem. Commun. pp. 2320–2321. [PubMed]
  • Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234–235.
  • Evans, O. R. & Lin, W. (2001). Chem. Mater.13, 3009–3017.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Kang, Y., Zhang, J., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2007). J. Mol. Struct.827, 126–129.
  • Liang, Y. & Li, W. (2005). Acta Cryst. E61, m1135–m1137.
  • Lin, W.-B., Chapman, M. E., Wang, Z. & Lee, G. T. (2000). Inorg. Chem.39, 4169–4173. [PubMed]
  • Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem.44, 7298–7300. [PubMed]
  • Lu, J. Y., Achten, M. A. & Zhang, A. (2007). Inorg. Chem. Commun.10, 114–116.
  • Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun.5, 196–198.
  • Luo, J., Jiang, F., Wang, R., Han, L., Lin, Z., Cao, R. & Hong, M. (2004). J. Mol. Struct.707, 211–216.
  • Madalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des.5, 707–711.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XSCANS and XEMP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). J. Solid State Chem.179, 4037–4046.
  • Wang, W.-G., Ma, C.-B., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Chen, F., Liao, D.-Z. & Li, L.-C. (2002). Bull. Chem. Soc. Jpn, 75, 2609–2614.
  • Wasson, A. E. & LaDuca, R. L. (2007). Polyhedron, 26, 1001–1011.
  • Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2003). Z. Anorg. Allg. Chem.629, 693–696.
  • Xian, Y., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem.633, 1274–1278.
  • Zhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591–593.
  • Zhang, J., Li, Z.-J., Wen, Y.-H., Kang, Y., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. C60, m389–m391. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography