PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o790.
Published online 2008 April 2. doi:  10.1107/S1600536808008672
PMCID: PMC2961095

4-[(E)-Phenyl­imino­meth­yl]benzonitrile

Abstract

In the mol­ecule of the title compound, C14H10N2, the two aromatic rings are oriented at a dihedral angle of 32.22 (6)°. In the crystal structure, inter­molecular C—H(...)N hydrogen bonds link the mol­ecules into centrosymmetric R 2 2(10) dimers. A weak π–π inter­action between the cyanobenzene rings, with a centroid–centroid distance of 3.8447 (3) Å, further stabilizes the crystal structure. There is also a C—H(...)π inter­action between the aniline ring and a CH group of the cyanobenzene ring.

Related literature

For related structures, see: Ojala et al. (2002 [triangle]). For ring motif details, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o790-scheme1.jpg

Experimental

Crystal data

  • C14H10N2
  • M r = 206.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o790-efi1.jpg
  • a = 7.2673 (4) Å
  • b = 10.0287 (7) Å
  • c = 15.4306 (12) Å
  • β = 96.177 (2)°
  • V = 1118.08 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 (2) K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker Kappa-APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.983, T max = 0.994
  • 13128 measured reflections
  • 2883 independent reflections
  • 1423 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.118
  • S = 1.03
  • 2883 reflections
  • 176 parameters
  • All H-atom parameters refined
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008672/hk2445sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008672/hk2445Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer.

supplementary crystallographic information

Comment

The crystal structures of p-halo-N-(p-cyanobenzylidene)- aniline and p-cyano-N-(p-halobenzylidene)aniline, (halo = bromo and chloro) (Ojala et al., 2002) have been reported, previously. The title compound, (I), differs due to no attachment of halogen atoms. It is prepared in aqueous medium and we report herein its crystal structure.

The molecule of (I), (Fig. 1), is a Schiff base ligand of aniline and p-cyanobenzaldehyde. The bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar, and they are oriented at a dihedral angle of 32.22 (6)°.

In the crystal structure, intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Fig. 2) (Bernstein et al., 1995; Etter, 1990), in which they may be effective in the stabilization of the structure. A weak π···π interaction between the A rings, at x, y, z and 1 - x, 1 - y, -z, further stabilizes the structure, with a centroid-centroid distance of 3.8447 (3) Å. There is also a C—H···π interaction between the ring B at x - 1/2, 1/2 -y, z - 1/2 and C5-H5, with H5-centroid distance of 2.650 (14) Å.

Experimental

The starting materials employed were first purified by distillation or crystallization just before use. The experiment was performed in stoppered flask at room temperature. The title compound was synthesized by using equimolecular mixture of aniline (5 mmol) and p-cyanobenzaldehyde (5 mmol) of pH = 9 in aqueous medium. The product was precipitated after a few minutes, and separated by filtration, washed with a small amount of water and dried for 2 d at room temperature in a vacuum desicator. The dried filtrate was used for X-ray analysis (yield; 53.09%, m.p. 339 K).

Refinement

H atoms were located in a difference syntheses and refined [C-H = 0.949 (15)-0.999 (12) Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of (I), showing the formation of centro- symmetric R22(10) ring motifs. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10N2F000 = 432
Mr = 206.24Dx = 1.226 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2883 reflections
a = 7.2673 (4) Åθ = 2.4–28.7º
b = 10.0287 (7) ŵ = 0.07 mm1
c = 15.4306 (12) ÅT = 296 (2) K
β = 96.177 (2)ºPrismatic, yellow
V = 1118.08 (13) Å30.20 × 0.15 × 0.12 mm
Z = 4

Data collection

Bruker Kappa-APEXII CCD diffractometer2883 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
Detector resolution: 7.30 pixels mm-1θmax = 28.7º
T = 296(2) Kθmin = 2.4º
ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −13→13
Tmin = 0.983, Tmax = 0.994l = −20→20
13128 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.0364P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2883 reflectionsΔρmax = 0.13 e Å3
176 parametersΔρmin = −0.10 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.70615 (14)0.08086 (11)0.10666 (8)0.0518 (3)
N20.05182 (19)0.57458 (14)−0.13327 (10)0.0855 (5)
C10.57569 (17)0.23345 (13)−0.00193 (9)0.0462 (4)
C20.40486 (19)0.23930 (15)0.03050 (10)0.0559 (4)
H20.3870 (17)0.1816 (14)0.0777 (9)0.067*
C30.27073 (19)0.32560 (16)−0.00409 (10)0.0593 (4)
H30.1494 (18)0.3263 (13)0.0181 (9)0.071*
C40.30456 (17)0.40866 (13)−0.07259 (9)0.0493 (4)
C50.4727 (2)0.40351 (15)−0.10663 (10)0.0538 (4)
H50.4929 (16)0.4628 (13)−0.1547 (9)0.065*
C60.60682 (19)0.31589 (15)−0.07083 (10)0.0528 (4)
H60.7273 (17)0.3117 (13)−0.0919 (9)0.063*
C70.72303 (19)0.14630 (14)0.03760 (10)0.0519 (4)
H70.8385 (17)0.1419 (12)0.0080 (8)0.062*
C80.1639 (2)0.50057 (16)−0.10713 (10)0.0610 (4)
C90.85826 (18)0.00574 (13)0.14575 (9)0.0476 (4)
C100.8196 (2)−0.11183 (15)0.18708 (10)0.0569 (4)
H100.6901 (18)−0.1361 (13)0.1860 (9)0.068*
C110.9612 (2)−0.18768 (16)0.22793 (10)0.0657 (5)
H110.9274 (18)−0.2675 (15)0.2552 (10)0.079*
C121.1415 (2)−0.14576 (17)0.22995 (11)0.0668 (5)
H121.2406 (18)−0.1973 (15)0.2609 (10)0.080*
C131.1803 (2)−0.02736 (18)0.19159 (11)0.0684 (5)
H131.305 (2)0.0051 (15)0.1918 (9)0.082*
C141.03990 (19)0.04859 (16)0.14922 (11)0.0605 (4)
H141.0655 (18)0.1354 (14)0.1248 (9)0.073*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0550 (7)0.0462 (7)0.0531 (8)0.0004 (5)0.0010 (6)0.0009 (6)
N20.0759 (9)0.0934 (11)0.0861 (11)0.0287 (9)0.0031 (8)0.0113 (9)
C10.0490 (8)0.0449 (8)0.0445 (9)0.0007 (6)0.0040 (7)−0.0042 (7)
C20.0552 (8)0.0586 (10)0.0550 (11)−0.0002 (8)0.0104 (8)0.0092 (8)
C30.0482 (8)0.0703 (11)0.0606 (11)0.0040 (8)0.0109 (8)0.0044 (9)
C40.0509 (8)0.0485 (9)0.0473 (9)0.0033 (7)−0.0005 (7)−0.0045 (7)
C50.0621 (9)0.0525 (9)0.0470 (10)0.0015 (7)0.0070 (8)0.0037 (7)
C60.0511 (8)0.0595 (10)0.0490 (10)0.0035 (8)0.0102 (7)0.0008 (8)
C70.0531 (8)0.0507 (9)0.0518 (10)0.0023 (7)0.0060 (7)−0.0034 (8)
C80.0597 (9)0.0658 (11)0.0571 (11)0.0072 (9)0.0036 (8)−0.0016 (9)
C90.0559 (8)0.0414 (8)0.0447 (9)0.0025 (7)0.0024 (7)−0.0017 (7)
C100.0656 (9)0.0498 (9)0.0535 (10)−0.0058 (8)−0.0024 (8)0.0003 (8)
C110.0921 (12)0.0461 (10)0.0556 (11)−0.0021 (9)−0.0072 (9)0.0045 (8)
C120.0790 (12)0.0624 (11)0.0565 (11)0.0186 (9)−0.0047 (9)0.0014 (9)
C130.0580 (9)0.0749 (12)0.0718 (12)0.0052 (9)0.0051 (9)0.0107 (10)
C140.0570 (9)0.0559 (9)0.0682 (12)0.0006 (8)0.0046 (8)0.0136 (9)

Geometric parameters (Å, °)

N1—C71.2686 (17)C6—H60.967 (12)
N1—C91.4177 (16)C7—H70.999 (12)
N2—C81.1429 (17)C9—C101.3835 (18)
C1—C61.3845 (19)C9—C141.3838 (18)
C1—C21.3888 (17)C10—C111.376 (2)
C1—C71.4635 (18)C10—H100.971 (12)
C2—C31.3683 (19)C11—C121.373 (2)
C2—H20.950 (14)C11—H110.949 (15)
C3—C41.3883 (19)C12—C131.370 (2)
C3—H30.979 (13)C12—H120.970 (14)
C4—C51.3823 (19)C13—C141.3801 (19)
C4—C81.436 (2)C13—H130.965 (14)
C5—C61.3823 (19)C14—H140.975 (14)
C5—H50.975 (13)
C7—N1—C9119.40 (12)C1—C7—H7116.7 (8)
C6—C1—C2118.54 (13)N2—C8—C4178.87 (17)
C6—C1—C7120.26 (12)C10—C9—C14119.13 (13)
C2—C1—C7121.16 (13)C10—C9—N1117.48 (12)
C3—C2—C1120.87 (14)C14—C9—N1123.25 (13)
C3—C2—H2122.3 (8)C11—C10—C9120.22 (14)
C1—C2—H2116.8 (8)C11—C10—H10123.0 (8)
C2—C3—C4119.97 (14)C9—C10—H10116.8 (8)
C2—C3—H3119.9 (8)C12—C11—C10120.37 (16)
C4—C3—H3120.1 (8)C12—C11—H11122.7 (9)
C5—C4—C3120.20 (13)C10—C11—H11116.9 (9)
C5—C4—C8120.42 (13)C13—C12—C11119.72 (16)
C3—C4—C8119.37 (13)C13—C12—H12119.9 (8)
C6—C5—C4119.08 (14)C11—C12—H12120.3 (8)
C6—C5—H5122.3 (7)C12—C13—C14120.48 (16)
C4—C5—H5118.6 (7)C12—C13—H13121.9 (9)
C5—C6—C1121.34 (14)C14—C13—H13117.6 (9)
C5—C6—H6121.2 (8)C13—C14—C9120.02 (14)
C1—C6—H6117.5 (8)C13—C14—H14121.0 (8)
N1—C7—C1121.76 (13)C9—C14—H14118.9 (8)
N1—C7—H7121.6 (7)
C6—C1—C2—C3−0.7 (2)C2—C1—C7—N1−5.6 (2)
C7—C1—C2—C3176.87 (14)C7—N1—C9—C10−146.46 (13)
C1—C2—C3—C40.1 (2)C7—N1—C9—C1437.8 (2)
C2—C3—C4—C50.7 (2)C14—C9—C10—C11−2.7 (2)
C2—C3—C4—C8−178.79 (13)N1—C9—C10—C11−178.56 (14)
C3—C4—C5—C6−0.8 (2)C9—C10—C11—C121.6 (2)
C8—C4—C5—C6178.69 (13)C10—C11—C12—C130.5 (3)
C4—C5—C6—C10.1 (2)C11—C12—C13—C14−1.5 (3)
C2—C1—C6—C50.6 (2)C12—C13—C14—C90.4 (3)
C7—C1—C6—C5−176.99 (12)C10—C9—C14—C131.6 (2)
C9—N1—C7—C1−175.33 (11)N1—C9—C14—C13177.28 (14)
C6—C1—C7—N1172.00 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.980 (13)2.616 (14)3.473 (2)146.1 (10)
C5—H5···Cgii0.975 (13)2.650 (14)3.5970 (17)163.9 (11)

Symmetry codes: (i) −x, −y+1, −z; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2445).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2002). J. Chem. Crystallogr.31, 377–386.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography