PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o850.
Published online 2008 April 16. doi:  10.1107/S1600536808009811
PMCID: PMC2961094

2,5-Dimethyl-3-phenyl­sulfonyl-1-benzofuran

Abstract

The title compound, C16H14O3S, was prepared by the oxidation of 2,5-dimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 76.98 (9)° with the plane of the benzofuran fragment. The crystal structure is stabilized by π–π inter­actions between furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.775 (4) Å]. In addition, the crystal structure exhibits intra- and inter­molecular C—H(...)O inter­actions.

Related literature

For the crystal structures of similar 3-phenyl­sulfonyl-1-benzo­furan derivatives, see: Choi et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o850-scheme1.jpg

Experimental

Crystal data

  • C16H14O3S
  • M r = 286.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o850-efi1.jpg
  • a = 7.476 (4) Å
  • b = 9.448 (5) Å
  • c = 11.283 (6) Å
  • α = 110.834 (8)°
  • β = 95.651 (9)°
  • γ = 106.122 (9)°
  • V = 698.0 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 298 (2) K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 4916 measured reflections
  • 2560 independent reflections
  • 1967 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.165
  • S = 1.08
  • 2560 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009811/sj2482sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009811/sj2482Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing studies on the synthesis and structure of 3-phenyl-sulfonyl-1-benzofuran analogues, the crystal structure of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b) have been described in the literature. Herein we report the molecular and crystal structure of the title compound, 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.065 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 76.98 (9)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by aromatic π—π stacking interactions between the furan ring and the benzene ring from neighbouring molecules. The Cg1···Cg2iii distance is 3.775 (4) Å (Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan and the C2—C7 benzene rings, respectively, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by intra- and intermolecular C—H···O interactions (Table 1 and Fig. 2; symmetry codes as in Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 717 mg, 3.2 mmol) was added in small portions to a stirred solution of 2,5-dimethyl 3-phenylsulfanyl-1-benzofuran (381 mg, 1.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2: 1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 411–412 K; Rf = 0.67 (hexane-ethyl acetate, 2: 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.45 (s, 3H), 2.79 (s, 3H), 7.10 (d, J = 8.44 Hz, 1H), 7.29 (d, J = 8.44 Hz, 1H), 7.47–7.60 (m, 3H), 7.67 (s, 1H), 7.97–8.03 (m, 2H); EI—MS 286 [M+].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
π—π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i)-x + 1, -y, -z + 1: (ii) -x + 1, -y, -z, (iii) -x + 1, -y + 1, -z + 1.]

Crystal data

C16H14O3SZ = 2
Mr = 286.33F000 = 300
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.476 (4) ÅCell parameters from 2576 reflections
b = 9.448 (5) Åθ = 2.5–28.2º
c = 11.283 (6) ŵ = 0.24 mm1
α = 110.834 (8)ºT = 298 (2) K
β = 95.651 (9)ºBlock, colorless
γ = 106.122 (9)º0.40 × 0.40 × 0.20 mm
V = 698.0 (6) Å3

Data collection

Bruker SMART CCD diffractometer2560 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
Detector resolution: 10.0 pixels mm-1θmax = 25.5º
T = 298(2) Kθmin = 2.0º
[var phi] and ω scansh = −9→9
Absorption correction: nonek = −11→11
4916 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.165  w = 1/[σ2(Fo2) + (0.0708P)2 + 0.3092P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2560 reflectionsΔρmax = 0.33 e Å3
181 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.48253 (10)0.09684 (9)0.28377 (7)0.0479 (3)
O10.7729 (3)0.5526 (2)0.3996 (2)0.0621 (6)
O20.3828 (3)0.0486 (3)0.37248 (19)0.0587 (6)
O30.3765 (3)0.0689 (3)0.1608 (2)0.0660 (6)
C10.6127 (4)0.2991 (3)0.3636 (3)0.0469 (7)
C20.6846 (4)0.3858 (3)0.5024 (3)0.0457 (7)
C30.6797 (4)0.3508 (3)0.6115 (3)0.0492 (7)
H30.61770.24660.60320.059*
C40.7678 (5)0.4719 (4)0.7328 (3)0.0585 (8)
C50.8626 (5)0.6271 (4)0.7433 (4)0.0672 (9)
H50.92170.70780.82540.081*
C60.8716 (5)0.6647 (4)0.6369 (4)0.0679 (10)
H60.93490.76860.64520.082*
C70.7827 (4)0.5416 (3)0.5174 (3)0.0523 (8)
C80.6696 (4)0.4052 (4)0.3078 (3)0.0551 (8)
C90.6558 (4)0.0025 (3)0.2563 (3)0.0453 (7)
C100.7288 (5)−0.0414 (4)0.3494 (3)0.0573 (8)
H100.6869−0.02270.42660.069*
C110.8658 (6)−0.1138 (4)0.3250 (5)0.0807 (12)
H110.9164−0.14520.38620.097*
C120.9277 (6)−0.1397 (4)0.2115 (5)0.0897 (14)
H121.0212−0.18750.19650.108*
C130.8531 (6)−0.0959 (5)0.1201 (4)0.0846 (13)
H130.8956−0.11440.04300.102*
C140.7170 (5)−0.0252 (4)0.1413 (3)0.0609 (9)
H140.66580.00420.07890.073*
C150.7617 (6)0.4376 (5)0.8531 (3)0.0803 (11)
H15A0.81920.35710.84800.096*
H15B0.63150.39950.85960.096*
H15C0.83070.53430.92830.096*
C160.6474 (6)0.3918 (5)0.1724 (4)0.0784 (11)
H16A0.77080.41750.15170.094*
H16B0.58640.46520.16270.094*
H16C0.57080.28390.11460.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0448 (4)0.0527 (4)0.0352 (4)0.0039 (3)0.0014 (3)0.0167 (3)
O10.0632 (13)0.0498 (12)0.0805 (17)0.0183 (10)0.0197 (12)0.0338 (12)
O20.0548 (12)0.0617 (13)0.0447 (13)0.0014 (10)0.0117 (10)0.0183 (10)
O30.0587 (12)0.0829 (16)0.0470 (14)0.0146 (12)−0.0054 (11)0.0268 (12)
C10.0428 (14)0.0491 (16)0.0488 (18)0.0137 (12)0.0075 (13)0.0217 (14)
C20.0395 (13)0.0424 (15)0.0505 (18)0.0135 (11)0.0072 (13)0.0141 (13)
C30.0510 (15)0.0442 (15)0.0435 (18)0.0126 (13)0.0034 (14)0.0118 (13)
C40.0577 (17)0.0580 (19)0.050 (2)0.0242 (15)0.0027 (15)0.0097 (15)
C50.0649 (19)0.0506 (18)0.060 (2)0.0172 (16)−0.0003 (17)−0.0023 (16)
C60.0588 (19)0.0379 (16)0.089 (3)0.0111 (14)0.0075 (19)0.0111 (17)
C70.0473 (15)0.0450 (16)0.066 (2)0.0183 (13)0.0126 (15)0.0221 (15)
C80.0525 (17)0.0607 (19)0.061 (2)0.0214 (15)0.0129 (15)0.0324 (17)
C90.0481 (14)0.0387 (13)0.0333 (15)0.0015 (11)−0.0006 (12)0.0089 (11)
C100.0599 (18)0.0500 (17)0.0522 (19)0.0051 (15)−0.0004 (15)0.0228 (15)
C110.075 (2)0.052 (2)0.103 (3)0.0119 (18)−0.013 (2)0.032 (2)
C120.074 (2)0.051 (2)0.121 (4)0.0243 (19)0.013 (3)0.007 (2)
C130.092 (3)0.064 (2)0.076 (3)0.023 (2)0.030 (2)0.002 (2)
C140.072 (2)0.0576 (19)0.0381 (17)0.0135 (16)0.0081 (16)0.0098 (14)
C150.098 (3)0.080 (3)0.047 (2)0.034 (2)−0.003 (2)0.0103 (18)
C160.087 (3)0.089 (3)0.078 (3)0.028 (2)0.020 (2)0.056 (2)

Geometric parameters (Å, °)

S—O31.425 (2)C8—C161.476 (4)
S—O21.431 (2)C9—C101.376 (4)
S—C11.726 (3)C9—C141.380 (4)
S—C91.758 (3)C10—C111.380 (5)
O1—C81.353 (4)C10—H100.9300
O1—C71.366 (4)C11—C121.367 (6)
C1—C81.359 (4)C11—H110.9300
C1—C21.446 (4)C12—C131.366 (6)
C2—C31.385 (4)C12—H120.9300
C2—C71.389 (4)C13—C141.360 (6)
C3—C41.381 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.396 (5)C15—H15A0.9600
C4—C151.505 (5)C15—H15B0.9600
C5—C61.370 (5)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.375 (5)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
O3—S—O2118.96 (14)C10—C9—C14121.2 (3)
O3—S—C1109.04 (14)C10—C9—S119.9 (2)
O2—S—C1107.44 (13)C14—C9—S119.0 (3)
O3—S—C9108.12 (14)C9—C10—C11118.3 (3)
O2—S—C9107.90 (14)C9—C10—H10120.9
C1—S—C9104.45 (14)C11—C10—H10120.9
C8—O1—C7107.4 (2)C12—C11—C10120.5 (4)
C8—C1—C2107.5 (3)C12—C11—H11119.8
C8—C1—S126.5 (3)C10—C11—H11119.8
C2—C1—S126.0 (2)C13—C12—C11120.4 (4)
C3—C2—C7119.1 (3)C13—C12—H12119.8
C3—C2—C1136.9 (3)C11—C12—H12119.8
C7—C2—C1104.0 (3)C14—C13—C12120.3 (4)
C4—C3—C2119.4 (3)C14—C13—H13119.8
C4—C3—H3120.3C12—C13—H13119.8
C2—C3—H3120.3C13—C14—C9119.4 (4)
C3—C4—C5119.4 (3)C13—C14—H14120.3
C3—C4—C15120.5 (3)C9—C14—H14120.3
C5—C4—C15120.1 (3)C4—C15—H15A109.5
C6—C5—C4122.4 (3)C4—C15—H15B109.5
C6—C5—H5118.8H15A—C15—H15B109.5
C4—C5—H5118.8C4—C15—H15C109.5
C5—C6—C7116.9 (3)H15A—C15—H15C109.5
C5—C6—H6121.6H15B—C15—H15C109.5
C7—C6—H6121.6C8—C16—H16A109.5
O1—C7—C6126.5 (3)C8—C16—H16B109.5
O1—C7—C2110.7 (3)H16A—C16—H16B109.5
C6—C7—C2122.8 (3)C8—C16—H16C109.5
O1—C8—C1110.4 (3)H16A—C16—H16C109.5
O1—C8—C16115.5 (3)H16B—C16—H16C109.5
C1—C8—C16134.1 (3)
O3—S—C1—C8−24.0 (3)C3—C2—C7—C6−1.8 (5)
O2—S—C1—C8−154.2 (3)C1—C2—C7—C6178.9 (3)
C9—S—C1—C891.3 (3)C7—O1—C8—C10.0 (3)
O3—S—C1—C2157.4 (2)C7—O1—C8—C16−178.4 (3)
O2—S—C1—C227.2 (3)C2—C1—C8—O10.3 (4)
C9—S—C1—C2−87.2 (3)S—C1—C8—O1−178.5 (2)
C8—C1—C2—C3−179.4 (3)C2—C1—C8—C16178.2 (4)
S—C1—C2—C3−0.6 (5)S—C1—C8—C16−0.6 (6)
C8—C1—C2—C7−0.4 (3)O3—S—C9—C10−156.0 (2)
S—C1—C2—C7178.4 (2)O2—S—C9—C10−26.2 (2)
C7—C2—C3—C41.7 (4)C1—S—C9—C1087.9 (2)
C1—C2—C3—C4−179.4 (3)O3—S—C9—C1424.4 (3)
C2—C3—C4—C5−0.9 (5)O2—S—C9—C14154.3 (2)
C2—C3—C4—C15179.0 (3)C1—S—C9—C14−91.6 (2)
C3—C4—C5—C60.2 (6)C14—C9—C10—C110.2 (4)
C15—C4—C5—C6−179.8 (3)S—C9—C10—C11−179.4 (2)
C4—C5—C6—C7−0.2 (5)C9—C10—C11—C120.5 (5)
C8—O1—C7—C6−178.7 (3)C10—C11—C12—C13−0.8 (6)
C8—O1—C7—C2−0.2 (3)C11—C12—C13—C140.3 (6)
C5—C6—C7—O1179.4 (3)C12—C13—C14—C90.3 (5)
C5—C6—C7—C21.1 (5)C10—C9—C14—C13−0.6 (4)
C3—C2—C7—O1179.6 (2)S—C9—C14—C13179.0 (2)
C1—C2—C7—O10.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.453.345 (4)160
C14—H14···O3ii0.932.503.263 (4)139
C16—H16C···O30.962.403.108 (4)130

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2482).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography