PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m722–m723.
Published online 2008 April 26. doi:  10.1107/S1600536808011112
PMCID: PMC2961090

Cyclo­pentyl­diphen­yl(4-thio­semi­carbazonopenta­noato-κO)tin(IV)

Abstract

The Sn atom in the title compound, [Sn(C5H9)(C6H5)2(C6H10N3O2S)], exists within a tetra­hedral geometry. The –NH2 group forms a weak hydrogen bond across a center of inversion to the S atom of an adjacent mol­ecule, as well as another weaker hydrogen (across another center of inversion) to the Sn-bound O atom of another mol­ecule. The hydrogen-bonded layer structure is consolidated by a strong hydrogen bond between the –NH– group and the uncoordinated O atom of a third mol­ecule.

Related literature

For the antibacterial and antifungal applications of cyclo­pentyl­diphenyl­tin carboxyl­ates, see: Koshy et al. (2001 [triangle]). For the crystal structures of cyclo­pentyl­diphenyl­tin derivatives, see: Lo & Ng (2004 [triangle]); Lo et al. (1999 [triangle]); Teo et al. (2004 [triangle]). For the synthesis of levulinic acid thio­semicarbazone, see: Ng (1992 [triangle]). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991 [triangle], 1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m722-scheme1.jpg

Experimental

Crystal data

  • [Sn(C5H9)(C6H5)2(C6H10N3O2S)]
  • M r = 530.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m722-efi1.jpg
  • a = 9.5780 (1) Å
  • b = 10.2375 (1) Å
  • c = 13.4205 (1) Å
  • α = 86.901 (1)°
  • β = 83.370 (1)°
  • γ = 63.667 (1)°
  • V = 1171.50 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 100 (2) K
  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.779, T max = 0.889
  • 15020 measured reflections
  • 5350 independent reflections
  • 5186 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.078
  • S = 1.03
  • 5350 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 1.99 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011112/tk2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011112/tk2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Triorganotin carboxylates having two different organyl substituents possess ehanced anti-bacterial and anti-fungal properties compared with the symmetrical compounds (Koshy et al., 2001). The synthesis of cyclopentyldiphenyltin hydroxide, which is the principal reagent that condenses readily with carboxylic acids, is a multi-step synthesis. Previous studies have characterized a few cyclopentyldiphenyltin derivatives (Lo & Ng, 2004; Lo et al., 1999; Teo et al., 2004). In the reaction with levulinic acid thiosemicarbazone (Ng, 1992), the organotin hydroxide yields a four-coordinate compound (I) (Fig. 1 & Table 1). The tin atom exists in a tetrahedral geometry; adjacent molecules are linked by hydrogen bonds into a layer structure, Table 2.

Experimental

Levulinic acid thiosemicarbazone was synthesized from the reaction of levulinic acid and thiosemicarbazide (Ng, 1992). Cyclopentyldiphenyltin hydroxide was sythesized by using a multistep reaction, starting from the Grignard reaction of cyclopentylmagnesium bromide on triphenyltin chloride. One phenyl radical was then cleaved by iodine in DMF; the resulting iodide was then hydrolyzed with sodium hydroxide in acetone to give the mixed triorganotin hydroxide (Lo et al., 1999). The thiosemicarbazone (1.1 g, 5 mmol) and triorganotin hydroxide (2 g, 5 mmol) were dissolved in hot ethanol (50 ml). The clear solution was filtered and colorless crystals separated from the cool solution after a day (yield: 75%).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen-bound H-atom were similarly generated (N–H 0.88±0.01 Å) and their temperature factors similarly tied.

The final difference Fourier map had a large peak at 1.4 Å from C1 but was otherwise diffuse.

Figures

Fig. 1.
70% Probability thermal ellipsoid plot of Sn(C5H9)(C6H5)2(C12H15N3O2S), (I), show atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(C5H9)(C6H5)2(C6H10N3O2S)]Z = 2
Mr = 530.24F000 = 540
Triclinic, P1Dx = 1.503 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.5780 (1) ÅCell parameters from 9905 reflections
b = 10.2375 (1) Åθ = 2.4–28.3º
c = 13.4205 (1) ŵ = 1.20 mm1
α = 86.901 (1)ºT = 100 (2) K
β = 83.370 (1)ºIrregular block, colorless
γ = 63.667 (1)º0.30 × 0.15 × 0.10 mm
V = 1171.50 (2) Å3

Data collection

Bruker SMART APEXII diffractometer5350 independent reflections
Radiation source: fine-focus sealed tube5186 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.014
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→12
Tmin = 0.779, Tmax = 0.889k = −13→13
15020 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078  w = 1/[σ2(Fo2) + (0.0431P)2 + 2.3757P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5350 reflectionsΔρmax = 1.99 e Å3
272 parametersΔρmin = −0.91 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.400900 (17)0.628156 (16)0.232609 (11)0.01648 (6)
S10.24404 (7)0.05406 (6)0.56139 (5)0.02291 (13)
O10.4075 (2)0.63541 (19)0.38521 (13)0.0191 (3)
O20.1648 (2)0.66366 (19)0.38475 (13)0.0188 (3)
N10.1747 (2)0.4584 (2)0.57946 (15)0.0161 (4)
N20.1483 (2)0.3354 (2)0.58783 (15)0.0160 (4)
H2N0.05520.34100.60870.019*
N30.4100 (2)0.2066 (2)0.54086 (17)0.0215 (4)
H3N10.41870.28830.54330.026*
H3N20.49330.12480.52400.026*
C10.2123 (3)0.8151 (3)0.1783 (2)0.0269 (5)
H10.11890.79440.18630.032*
C20.2415 (5)0.8439 (5)0.0673 (3)0.0712 (16)
H2A0.19320.80010.02670.085*
H2B0.35530.80100.04600.085*
C30.1675 (4)1.0097 (4)0.0531 (2)0.0359 (7)
H3A0.24911.04420.03760.043*
H3B0.09871.0397−0.00190.043*
C40.0732 (5)1.0696 (4)0.1530 (3)0.0495 (9)
H4A−0.03431.07880.15420.059*
H4B0.06721.16630.16630.059*
C50.1651 (4)0.9556 (3)0.2307 (3)0.0398 (7)
H5A0.25770.96740.24560.048*
H5B0.09780.96250.29400.048*
C60.4168 (3)0.4221 (3)0.19650 (18)0.0199 (5)
C70.4926 (3)0.2975 (3)0.2541 (2)0.0245 (5)
H70.53610.30440.31260.029*
C80.5049 (3)0.1635 (3)0.2263 (2)0.0285 (6)
H80.55600.07940.26610.034*
C90.4429 (3)0.1523 (3)0.1411 (2)0.0271 (5)
H90.45160.06070.12230.032*
C100.3684 (3)0.2743 (3)0.08321 (19)0.0238 (5)
H100.32440.26680.02510.029*
C110.3575 (3)0.4079 (3)0.10956 (19)0.0225 (5)
H110.30930.49060.06800.027*
C120.6217 (3)0.6303 (3)0.19063 (17)0.0176 (4)
C130.7494 (3)0.5069 (3)0.14887 (18)0.0201 (5)
H130.73820.42060.14030.024*
C140.8925 (3)0.5089 (3)0.11974 (19)0.0236 (5)
H140.97840.42450.09130.028*
C150.9095 (3)0.6343 (3)0.13229 (19)0.0243 (5)
H151.00700.63590.11180.029*
C160.7847 (3)0.7577 (3)0.17470 (19)0.0231 (5)
H160.79700.84320.18410.028*
C170.6419 (3)0.7553 (3)0.20323 (18)0.0198 (5)
H170.55650.84000.23180.024*
C180.2692 (3)0.6595 (2)0.43182 (18)0.0163 (4)
C190.2537 (3)0.6844 (3)0.54288 (18)0.0184 (4)
H19A0.27390.76920.55360.022*
H19B0.33540.59820.57330.022*
C200.0950 (3)0.7117 (3)0.59732 (18)0.0194 (5)
H20A0.08660.75150.66450.023*
H20B0.01260.78720.56000.023*
C210.0628 (3)0.5805 (2)0.61014 (17)0.0162 (4)
C22−0.0961 (3)0.6051 (3)0.65817 (19)0.0211 (5)
H22A−0.14930.70230.68840.032*
H22B−0.08510.53130.71030.032*
H22C−0.15790.59790.60730.032*
C230.2715 (3)0.2065 (2)0.56254 (17)0.0170 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01453 (9)0.01349 (9)0.02213 (10)−0.00650 (6)−0.00357 (6)0.00085 (6)
S10.0168 (3)0.0119 (3)0.0404 (4)−0.0064 (2)−0.0043 (2)0.0007 (2)
O10.0150 (8)0.0209 (8)0.0235 (8)−0.0098 (7)−0.0020 (6)−0.0008 (6)
O20.0167 (8)0.0197 (8)0.0223 (8)−0.0099 (7)−0.0036 (6)0.0004 (6)
N10.0180 (9)0.0135 (9)0.0185 (9)−0.0081 (8)−0.0033 (7)−0.0001 (7)
N20.0139 (9)0.0128 (9)0.0219 (9)−0.0065 (7)−0.0021 (7)0.0007 (7)
N30.0148 (9)0.0140 (9)0.0349 (11)−0.0058 (8)0.0000 (8)−0.0047 (8)
C10.0213 (12)0.0260 (13)0.0251 (12)−0.0028 (10)−0.0042 (10)0.0019 (10)
C20.046 (2)0.068 (3)0.040 (2)0.023 (2)0.0084 (16)0.0231 (19)
C30.0378 (16)0.0442 (18)0.0334 (15)−0.0241 (14)−0.0144 (12)0.0166 (13)
C40.049 (2)0.0292 (16)0.064 (2)−0.0123 (15)−0.0080 (18)0.0046 (15)
C50.0435 (18)0.0289 (15)0.0423 (17)−0.0111 (14)−0.0067 (14)0.0004 (13)
C60.0214 (11)0.0190 (11)0.0228 (11)−0.0120 (10)−0.0032 (9)0.0000 (9)
C70.0274 (13)0.0209 (12)0.0287 (13)−0.0120 (10)−0.0120 (10)0.0026 (10)
C80.0327 (14)0.0183 (12)0.0366 (14)−0.0120 (11)−0.0105 (11)0.0048 (10)
C90.0285 (14)0.0221 (12)0.0323 (14)−0.0124 (11)−0.0035 (11)−0.0021 (10)
C100.0257 (13)0.0257 (13)0.0224 (12)−0.0133 (11)−0.0020 (10)−0.0032 (9)
C110.0236 (12)0.0205 (12)0.0230 (12)−0.0091 (10)−0.0052 (9)0.0021 (9)
C120.0163 (11)0.0177 (11)0.0186 (10)−0.0072 (9)−0.0035 (8)0.0027 (8)
C130.0215 (12)0.0169 (11)0.0209 (11)−0.0075 (9)−0.0030 (9)0.0021 (9)
C140.0188 (12)0.0238 (12)0.0227 (12)−0.0050 (10)−0.0008 (9)0.0009 (9)
C150.0200 (12)0.0322 (14)0.0232 (12)−0.0144 (11)−0.0020 (9)0.0040 (10)
C160.0265 (13)0.0260 (12)0.0233 (12)−0.0171 (11)−0.0041 (10)0.0015 (9)
C170.0194 (11)0.0185 (11)0.0211 (11)−0.0079 (9)−0.0026 (9)−0.0003 (9)
C180.0165 (11)0.0098 (9)0.0234 (11)−0.0063 (8)−0.0023 (8)−0.0002 (8)
C190.0206 (11)0.0142 (10)0.0228 (11)−0.0095 (9)−0.0038 (9)−0.0014 (8)
C200.0202 (11)0.0143 (10)0.0226 (11)−0.0064 (9)−0.0013 (9)−0.0029 (8)
C210.0163 (11)0.0157 (10)0.0162 (10)−0.0063 (9)−0.0033 (8)−0.0009 (8)
C220.0172 (11)0.0209 (11)0.0234 (11)−0.0070 (9)−0.0006 (9)−0.0032 (9)
C230.0173 (11)0.0139 (10)0.0203 (11)−0.0068 (9)−0.0050 (8)0.0006 (8)

Geometric parameters (Å, °)

Sn1—O12.063 (2)C7—H70.9500
Sn1—C12.131 (3)C8—C91.379 (4)
Sn1—C62.125 (2)C8—H80.9500
Sn1—C122.134 (2)C9—C101.380 (4)
S1—C231.695 (2)C9—H90.9500
O1—C181.320 (3)C10—C111.387 (4)
O2—C181.227 (3)C10—H100.9500
N1—C211.283 (3)C11—H110.9500
N1—N21.387 (3)C12—C131.398 (3)
N2—C231.350 (3)C12—C171.399 (3)
N2—H2N0.8800C13—C141.391 (4)
N3—C231.325 (3)C13—H130.9500
N3—H3N10.8800C14—C151.384 (4)
N3—H3N20.8800C14—H140.9500
C1—C51.492 (4)C15—C161.389 (4)
C1—C21.522 (4)C15—H150.9500
C1—H11.0000C16—C171.388 (4)
C2—C31.532 (5)C16—H160.9500
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.505 (3)
C3—C41.519 (5)C19—C201.520 (3)
C3—H3A0.9900C19—H19A0.9900
C3—H3B0.9900C19—H19B0.9900
C4—C51.547 (5)C20—C211.503 (3)
C4—H4A0.9900C20—H20A0.9900
C4—H4B0.9900C20—H20B0.9900
C5—H5A0.9900C21—C221.499 (3)
C5—H5B0.9900C22—H22A0.9800
C6—C111.396 (3)C22—H22B0.9800
C6—C71.398 (3)C22—H22C0.9800
C7—C81.393 (4)
O1—Sn1—C1112.7 (1)C8—C9—H9120.0
O1—Sn1—C6108.6 (1)C10—C9—H9120.0
O1—Sn1—C1295.9 (1)C9—C10—C11120.2 (2)
C1—Sn1—C6116.5 (1)C9—C10—H10119.9
C1—Sn1—C12112.1 (1)C11—C10—H10119.9
C6—Sn1—C12109.2 (1)C10—C11—C6120.7 (2)
Sn1—O1—C18109.3 (1)C10—C11—H11119.7
C21—N1—N2118.3 (2)C6—C11—H11119.7
C23—N2—N1117.11 (19)C13—C12—C17118.4 (2)
C23—N2—H2N121.4C13—C12—Sn1120.71 (18)
N1—N2—H2N121.4C17—C12—Sn1120.94 (18)
C23—N3—H3N1120.0C14—C13—C12120.8 (2)
C23—N3—H3N2120.0C14—C13—H13119.6
H3N1—N3—H3N2120.0C12—C13—H13119.6
C5—C1—C2106.2 (3)C15—C14—C13119.9 (2)
C5—C1—Sn1116.7 (2)C15—C14—H14120.1
C2—C1—Sn1113.0 (2)C13—C14—H14120.1
C5—C1—H1106.8C14—C15—C16120.4 (2)
C2—C1—H1106.8C14—C15—H15119.8
Sn1—C1—H1106.8C16—C15—H15119.8
C1—C2—C3106.9 (3)C17—C16—C15119.5 (2)
C1—C2—H2A110.3C17—C16—H16120.2
C3—C2—H2A110.3C15—C16—H16120.2
C1—C2—H2B110.3C16—C17—C12121.1 (2)
C3—C2—H2B110.3C16—C17—H17119.5
H2A—C2—H2B108.6C12—C17—H17119.5
C4—C3—C2104.5 (3)O2—C18—O1120.5 (2)
C4—C3—H3A110.9O2—C18—C19125.2 (2)
C2—C3—H3A110.9O1—C18—C19114.2 (2)
C4—C3—H3B110.9C18—C19—C20114.6 (2)
C2—C3—H3B110.9C18—C19—H19A108.6
H3A—C3—H3B108.9C20—C19—H19A108.6
C3—C4—C5104.1 (3)C18—C19—H19B108.6
C3—C4—H4A110.9C20—C19—H19B108.6
C5—C4—H4A110.9H19A—C19—H19B107.6
C3—C4—H4B110.9C21—C20—C19115.40 (19)
C5—C4—H4B110.9C21—C20—H20A108.4
H4A—C4—H4B109.0C19—C20—H20A108.4
C1—C5—C4102.4 (3)C21—C20—H20B108.4
C1—C5—H5A111.3C19—C20—H20B108.4
C4—C5—H5A111.3H20A—C20—H20B107.5
C1—C5—H5B111.3N1—C21—C22126.5 (2)
C4—C5—H5B111.3N1—C21—C20116.6 (2)
H5A—C5—H5B109.2C22—C21—C20116.8 (2)
C11—C6—C7118.4 (2)C21—C22—H22A109.5
C11—C6—Sn1119.38 (18)C21—C22—H22B109.5
C7—C6—Sn1122.09 (18)H22A—C22—H22B109.5
C8—C7—C6120.4 (2)C21—C22—H22C109.5
C8—C7—H7119.8H22A—C22—H22C109.5
C6—C7—H7119.8H22B—C22—H22C109.5
C9—C8—C7120.2 (3)N3—C23—N2117.2 (2)
C9—C8—H8119.9N3—C23—S1123.29 (18)
C7—C8—H8119.9N2—C23—S1119.54 (18)
C8—C9—C10120.0 (2)
C6—Sn1—O1—C18−77.70 (16)C9—C10—C11—C6−2.2 (4)
C1—Sn1—O1—C1852.80 (17)C7—C6—C11—C102.5 (4)
C12—Sn1—O1—C18169.72 (15)Sn1—C6—C11—C10179.0 (2)
C21—N1—N2—C23−174.8 (2)O1—Sn1—C12—C13110.54 (19)
O1—Sn1—C1—C532.7 (3)C6—Sn1—C12—C13−1.5 (2)
C6—Sn1—C1—C5159.1 (2)C1—Sn1—C12—C13−132.09 (19)
C12—Sn1—C1—C5−74.2 (2)O1—Sn1—C12—C17−70.09 (19)
O1—Sn1—C1—C2156.3 (3)C6—Sn1—C12—C17177.87 (18)
C6—Sn1—C1—C2−77.3 (3)C1—Sn1—C12—C1747.3 (2)
C12—Sn1—C1—C249.4 (3)C17—C12—C13—C14−0.6 (4)
C5—C1—C2—C3−15.5 (4)Sn1—C12—C13—C14178.79 (18)
Sn1—C1—C2—C3−144.7 (3)C12—C13—C14—C150.2 (4)
C1—C2—C3—C4−9.9 (5)C13—C14—C15—C160.6 (4)
C2—C3—C4—C530.7 (4)C14—C15—C16—C17−0.9 (4)
C2—C1—C5—C434.0 (4)C15—C16—C17—C120.4 (4)
Sn1—C1—C5—C4161.0 (2)C13—C12—C17—C160.3 (4)
C3—C4—C5—C1−40.3 (4)Sn1—C12—C17—C16−179.07 (18)
O1—Sn1—C6—C11155.98 (19)Sn1—O1—C18—O25.1 (3)
C1—Sn1—C6—C1127.6 (2)Sn1—O1—C18—C19−173.25 (14)
C12—Sn1—C6—C11−100.6 (2)O2—C18—C19—C202.0 (3)
O1—Sn1—C6—C7−27.7 (2)O1—C18—C19—C20−179.78 (19)
C1—Sn1—C6—C7−156.1 (2)C18—C19—C20—C2172.7 (3)
C12—Sn1—C6—C775.7 (2)N2—N1—C21—C222.0 (3)
C11—C6—C7—C8−1.6 (4)N2—N1—C21—C20−178.51 (19)
Sn1—C6—C7—C8−178.0 (2)C19—C20—C21—N13.9 (3)
C6—C7—C8—C90.4 (4)C19—C20—C21—C22−176.6 (2)
C7—C8—C9—C10−0.1 (4)N1—N2—C23—N36.1 (3)
C8—C9—C10—C111.0 (4)N1—N2—C23—S1−174.76 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.882.122.975 (3)163
N3—H3n1···O1ii0.882.433.121 (3)136
N3—H3n2···S1iii0.882.543.389 (2)161

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2255).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Koshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107–111. [PMC free article] [PubMed]
  • Lo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55, 889–894.
  • Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m715–m716.
  • Ng, S. W. (1992). Acta Cryst. C48, 2057–2058.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teo, Y. Y., Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m1478–m1480.
  • Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  • Tiekink, E. R. T. (1994). Trends Organomet. Chem.1, 71–116.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography