PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o824–o825.
Published online 2008 April 10. doi:  10.1107/S1600536808009148
PMCID: PMC2961087

(E)-3,4-Dihydroxy­benzaldehyde 4-ethyl­thio­semicarbazone

Abstract

The title compound, C10H13N3O2S, was prepared by condensation of 3,4-dihydroxy­benzaldehyde with 4-ethyl-3-thio­semicarbazide. The mol­ecule adopts an E configuration with respect to the C=N bond. One of the OH substituents on the dihydroxy­benzene ring is disordered over the two possible 3-positions on either side of the ordered 4-hydr­oxy group. The occupancy of the major disorder component refined to 0.633 (7). The mol­ecule is essentially planar, with an r.m.s. deviation through all non-H atoms of 0.0862 Å. An intra­molecular N—H(...)N hydrogen bond forms between the outer amine residue and the imine N atom, generating an S(5) ring motif and contributing to the planarity of the mol­ecule. In the crystal structure, an extensive network of classical O—H(...)O, O—H(...)S and N—H(...)S hydrogen bonds and weak C—H(...)O and S(...)O [3.301 (3) Å] inter­actions link mol­ecules into sheets running approximately parallel to the ab plane.

Related literature

For related structures, see: Swesi et al. (2006 [triangle]); Kovala-Demertzi et al. (2004 [triangle]); Jian & Li (2006 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]). For ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o824-scheme1.jpg

Experimental

Crystal data

  • C10H13N3O2S
  • M r = 239.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o824-efi1.jpg
  • a = 10.6549 (12) Å
  • b = 12.9020 (16) Å
  • c = 8.6375 (11) Å
  • β = 107.910 (4)°
  • V = 1129.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 91 (2) K
  • 0.44 × 0.11 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.818, T max = 0.975
  • 12327 measured reflections
  • 1998 independent reflections
  • 1507 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.168
  • S = 1.05
  • 1998 reflections
  • 165 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.41 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009148/hg2389sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009148/hg2389Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant UKM-ST-01-FRGS0022–2006. We also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

For example the structure of the related molecule 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate has been reported by Swesi et al. (2006) as have the structures of a phenylthiocarbazole with a single hydroxy-substituent on the benzylidene ring (Jian & Li, 2006) and of a palladium(II) complex of an ethylthiosemicarbonate ligand deprotonated at the phenolate ring (Kovala-Demertzi et al., 2004).

The molecule adopts an E configuration with respect to the C=N bond and bond distances and angles are normal (Allen et al., 1987). One of the OH substituents on the dihydroxy benzene ring is disordered over the two possible 3-positions (labelled O3 and O5) on either side of the ordered O4 hydroxo group. Occupancy of the O3 and H5 atoms of the major disorder component refines to 0.633 (7). The molecule is essentially planar with an r.m.s. deviation through all non-hydrogen atoms of 0.0862 Å. An intramolecular N3—H3B···N1 hydrogen bond forms between the outer amine residue and the imine N atom generating an S(5) ring motif (Bernstein et al., 1995) which contributes to the planarity of the molecule.

In the crystal structure N2—H2A···S1 hydrogen bonds, Table 1, generate centrosymmetric R22(8) rings. Other classical O—H···O and O—H···S hydrogen bonds combine with weak C—H···O and S1···O4i interactions (d(S1···O4) = 3.301 (3) Å; i = -1 + x, 1/2 - y, 1/2 + z) to form sheets running approximately parallel to the ac diagonal, Fig 2.

Experimental

The title compound C10H13N3O2S was prepared by heating an ethanolic (35 ml) solution of 3,4-dihydroxybenzaldehyde (1.4 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 1 h. The resulting product was isolated and recrystallized from ethanol to afford red block-shaped crystals in 71% yield (m.p. 464–467 K).

Refinement

The aromatic H atoms of the two disorder components were located in a difference Fourier map and refined with fixed isotropic displacement parameters with C—H distances restrained to 0.95 (1) Å. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.99 Å, Uiso = 1.2Ueq (C) for CH2, 0.98 Å, Uiso = 1.5Ueq (C) for CH3 0.88 Å, Uiso = 1.2Ueq (N) for NH and 0.84 Å, Uiso = 1.5Ueq (O) for the OH atoms. Close contacts involving the H atoms of the OH substituents, suggest that there may be unresolved disorder particularly with the location of the H atoms. The highest residual electron density peak is located at 2.56 Å from O5 and the deepest hole is located at 0.81 Å from S1.

Figures

Fig. 1.
The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line. For clarity only the major disorder component of the ...
Fig. 2.
Crystal packing of (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.

Crystal data

C10H13N3O2SF000 = 504
Mr = 239.29Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3071 reflections
a = 10.6549 (12) Åθ = 2.6–25.0º
b = 12.9020 (16) ŵ = 0.28 mm1
c = 8.6375 (11) ÅT = 91 (2) K
β = 107.910 (4)ºBlock, red
V = 1129.9 (2) Å30.44 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1998 independent reflections
Radiation source: fine-focus sealed tube1507 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 92(2) Kθmax = 25.1º
ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2006)h = −12→12
Tmin = 0.818, Tmax = 0.975k = −15→15
12327 measured reflectionsl = −10→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168  w = 1/[σ2(Fo2) + (0.0718P)2 + 1.7231P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1998 reflectionsΔρmax = 1.41 e Å3
165 parametersΔρmin = −0.64 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7990 (3)0.2409 (2)0.2636 (3)0.0304 (7)
C20.9009 (3)0.1922 (2)0.2235 (3)0.0342 (7)
H20.90970.11900.23230.041*
C30.9897 (3)0.2493 (3)0.1712 (4)0.0382 (8)
H31.048 (11)0.201 (8)0.147 (17)0.046*0.367 (7)
O31.0884 (4)0.2059 (4)0.1330 (6)0.0525 (14)0.633 (7)
H3A1.13010.25160.09990.079*0.633 (7)
C50.8761 (3)0.4051 (3)0.1995 (4)0.0394 (8)
H50.862 (11)0.477 (2)0.177 (13)0.047*0.633 (7)
O50.8733 (10)0.5042 (5)0.1953 (12)0.045 (2)0.367 (7)
H5A0.88560.52480.10890.068*0.367 (7)
C40.9776 (3)0.3557 (3)0.1580 (4)0.0381 (8)
O41.0659 (2)0.4115 (2)0.1053 (3)0.0503 (7)
H41.02940.46560.05840.075*
C60.7871 (3)0.3484 (2)0.2514 (3)0.0334 (7)
H60.71780.38250.27870.040*
C70.7094 (3)0.1775 (3)0.3225 (3)0.0357 (7)
H70.72280.10470.33220.043*
N10.6134 (2)0.2175 (2)0.3612 (3)0.0390 (7)
N20.5403 (3)0.1489 (3)0.4216 (3)0.0442 (7)
H2A0.55670.08190.42440.053*
C80.4433 (3)0.1862 (3)0.4763 (4)0.0458 (9)
S10.36442 (11)0.10262 (10)0.56744 (13)0.0685 (4)
N30.4168 (3)0.2853 (3)0.4565 (3)0.0506 (8)
H3B0.46600.32330.41330.061*
C90.3112 (4)0.3371 (4)0.5010 (5)0.0678 (13)
H9A0.31180.31330.61020.081*
H9B0.22520.31770.42240.081*
C100.3260 (5)0.4506 (5)0.5024 (6)0.0804 (15)
H10A0.40420.47080.59170.121*
H10B0.24760.48310.51790.121*
H10C0.33610.47350.39870.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0251 (14)0.0466 (18)0.0195 (14)−0.0048 (12)0.0069 (11)0.0028 (12)
C20.0353 (16)0.0376 (17)0.0304 (15)0.0009 (13)0.0112 (13)0.0039 (13)
C30.0292 (16)0.057 (2)0.0319 (16)0.0021 (14)0.0146 (13)0.0001 (15)
O30.037 (3)0.075 (3)0.059 (3)0.009 (2)0.036 (2)−0.002 (2)
C50.0427 (18)0.0392 (18)0.0365 (17)−0.0057 (15)0.0122 (14)0.0051 (15)
O50.048 (4)0.035 (4)0.053 (5)−0.010 (4)0.015 (3)0.013 (4)
C40.0331 (16)0.056 (2)0.0265 (15)−0.0149 (15)0.0113 (13)0.0037 (14)
O40.0449 (14)0.0657 (17)0.0471 (14)−0.0192 (12)0.0241 (12)0.0093 (12)
C60.0304 (15)0.0422 (17)0.0295 (16)0.0020 (13)0.0119 (13)0.0009 (13)
C70.0348 (16)0.0476 (19)0.0252 (15)−0.0110 (14)0.0099 (13)0.0018 (13)
N10.0281 (13)0.0639 (18)0.0267 (13)−0.0131 (12)0.0110 (11)0.0059 (12)
N20.0380 (14)0.0675 (19)0.0319 (14)−0.0205 (14)0.0178 (12)−0.0021 (13)
C80.0331 (17)0.082 (3)0.0250 (16)−0.0237 (18)0.0133 (13)−0.0102 (17)
S10.0738 (7)0.0931 (9)0.0585 (7)−0.0513 (6)0.0497 (6)−0.0299 (6)
N30.0305 (14)0.092 (3)0.0352 (15)−0.0037 (15)0.0181 (12)0.0076 (16)
C90.038 (2)0.131 (4)0.039 (2)0.008 (2)0.0176 (16)0.000 (2)
C100.076 (3)0.122 (5)0.053 (3)0.036 (3)0.034 (2)0.000 (3)

Geometric parameters (Å, °)

C1—C21.388 (4)C7—N11.278 (4)
C1—C61.395 (5)C7—H70.9500
C1—C71.462 (4)N1—N21.384 (3)
C2—C31.380 (4)N2—C81.350 (4)
C2—H20.9500N2—H2A0.8800
C3—O31.319 (5)C8—N31.310 (5)
C3—C41.380 (5)C8—S11.702 (3)
C3—H30.950 (10)S1—O4i3.301 (2)
O3—H3A0.8400N3—C91.457 (5)
C5—O51.279 (7)N3—H3B0.8800
C5—C61.376 (4)C9—C101.473 (7)
C5—C41.394 (5)C9—H9A0.9900
C5—H50.950 (10)C9—H9B0.9900
O5—H5A0.8400C10—H10A0.9800
C4—O41.369 (3)C10—H10B0.9800
O4—H40.8400C10—H10C0.9800
C6—H60.9500
C2—C1—C6119.4 (3)N1—C7—C1121.7 (3)
C2—C1—C7118.6 (3)N1—C7—H7119.1
C6—C1—C7121.9 (3)C1—C7—H7119.1
C3—C2—C1120.6 (3)C7—N1—N2115.4 (3)
C3—C2—H2119.7C8—N2—N1119.0 (3)
C1—C2—H2119.7C8—N2—H2A120.5
O3—C3—C4117.6 (3)N1—N2—H2A120.5
O3—C3—C2122.3 (4)N3—C8—N2117.4 (3)
C4—C3—C2120.1 (3)N3—C8—S1124.2 (3)
C4—C3—H3133 (8)N2—C8—S1118.4 (3)
C2—C3—H3107 (8)C8—N3—C9124.5 (3)
C3—O3—H3A109.5C8—N3—H3B117.8
O5—C5—C6121.9 (5)C9—N3—H3B117.8
O5—C5—C4117.6 (5)N3—C9—C10111.6 (4)
C6—C5—C4120.5 (3)N3—C9—H9A109.3
C6—C5—H5120 (7)C10—C9—H9A109.3
C4—C5—H5119 (7)N3—C9—H9B109.3
C5—O5—H5A109.5C10—C9—H9B109.3
O4—C4—C3119.6 (3)H9A—C9—H9B108.0
O4—C4—C5120.8 (3)C9—C10—H10A109.5
C3—C4—C5119.6 (3)C9—C10—H10B109.5
C4—O4—H4109.5H10A—C10—H10B109.5
C5—C6—C1119.9 (3)C9—C10—H10C109.5
C5—C6—H6120.1H10A—C10—H10C109.5
C1—C6—H6120.1H10B—C10—H10C109.5

Symmetry codes: (i) x−1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3B···N10.882.232.626 (4)107
O5—H5A···S1ii0.842.823.106 (9)102
C2—H2···O5iii0.952.653.335 (8)129
N2—H2A···S1iv0.882.523.392 (4)172
O4—H4···O4v0.842.162.988 (5)169
C9—H9A···O3i0.992.462.985 (5)113

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) −x+2, −y+1, −z; (i) x−1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2389).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Jian, F.-F. & Li, Y. (2006). Acta Cryst. E62, o4563–o4564.
  • Kovala-Demertzi, D., Yadav, P. N., Demertzis, M. A., Jasiski, J. P., Andreadaki, F. J. & Kostas, I. D. (2004). Tetrahedron Lett.45, 2923–2926.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography