PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m630.
Published online 2008 April 10. doi:  10.1107/S1600536808008854
PMCID: PMC2961085

Diaqua­bis(2,5-di-4-pyridyl-1,3,4-thia­diazole-κN 2)bis­(thio­cyanato-κN)copper(II) dihydrate

Abstract

In the title compound, [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the Cu atom is located on an inversion center and displays an octa­hedral geometry. Two N atoms of two different 2,5-di-4-pyridyl-1,3,4-thia­diazole ligands and two N atoms from two separate thio­cyanate mol­ecules form the equatorial plane, while two coordinated water mol­ecules are in axial positions. The crystal structure is consolidated by extensive hydrogen bonding, forming a two-dimensional network.

Related literature

For related literature, see: Moulton & Zaworotko (2001 [triangle]); Su et al. (2003 [triangle]); Zhang et al. (2005 [triangle]); Zhou et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m630-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2O
  • M r = 732.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m630-efi1.jpg
  • a = 7.0555 (11) Å
  • b = 8.3034 (13) Å
  • c = 14.849 (2) Å
  • α = 104.629 (2)°
  • β = 93.067 (2)°
  • γ = 112.228 (2)°
  • V = 768.3 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 298 (2) K
  • 0.28 × 0.24 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.760, T max = 0.828
  • 3905 measured reflections
  • 2692 independent reflections
  • 1794 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.169
  • S = 1.07
  • 2692 reflections
  • 205 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008854/dn2330sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008854/dn2330Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081).

supplementary crystallographic information

Comment

In recent years, the rational design and assembly of metal-organic frameworks (MOFs) with well regulated network structures have received remarkable attention in order to develop new functional materials with potential applications (Moulton & Zaworotko, 2001). Nevertheless, it is still a great challenge to predict the exact structures and compositions of polymeric compounds assembled in a motifs, although some structures with various architectures have been reported in MOFs. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a T-shape, V-shape etc, in the construction of versatile coordination polymer architectures (Su et al., 2003, Zhou et al., 2006). However, the bent 2,5-di-4-pyridyl-1,3,4-thiadiazole (L), have been less studied as building blocks in the construction of metal-organic frameworks (Zhang et al.; 2005). The angular 2,5-di-4-pyridyl-1,3,4-thiadiazole has flexible coodination modes than general 4,4'-bipyrdine-like ligands due to two more potential N-donors atoms. In this paper, we report the synthesis and crystal structure of the title complex with a multifunctional L ligand,(I).

The Cu atom is located on an inversion center and displays octahedral geometry (Fig. 1). Two nitrogen atoms of two different 2,5-di-4-pyridyl-1,3,4-thiadiazole ligands and two nitrogen atoms from two separated thiocyanate molecules form the basal plane, while two coordinated water molecules hold in axis position. The bond and angle are similar with others complexes with L ligand (Zhang et al., 2005). These monuclear units are held together by means of H bonds involving the coordinated water molecules, sulfur atoms of thiocyanate, lattice water molecules and N atoms of pyridyl rings from L ligands, which further assemble into a 2-D supramolecular sheet (Fig.2, Table 1).

Experimental

Cu(NCS)2(0.025 g, 0.13 mmol), L(0.031 g, 0.21 mmol), and NaOH (0.08 g, 0.2 mmol). were added in a solvent of methanol, the mixture was heated for ten hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Four weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (methyl) and Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Figures

Fig. 1.
Molecular view of (I), with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Water molecule and H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 2 - y, -z].
Fig. 2.
Partial packing view of (I), showing O—H···O, O—H···S and O—H···N hydrogen bonds leading to the formation of two-dimensional network. Hydrogen bonds are shown ...

Crystal data

[Cu(NCS)2(C12H8N4S)2(H2O)2]·2H2OZ = 1
Mr = 732.33F000 = 375
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.0555 (11) ÅCell parameters from 2692 reflections
b = 8.3034 (13) Åθ = 1.4–25.1º
c = 14.849 (2) ŵ = 1.03 mm1
α = 104.629 (2)ºT = 298 (2) K
β = 93.067 (2)ºBlock, blue
γ = 112.228 (2)º0.28 × 0.24 × 0.19 mm
V = 768.3 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer2692 independent reflections
Radiation source: fine-focus sealed tube1794 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 298(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −8→5
Tmin = 0.761, Tmax = 0.828k = −9→9
3905 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.169  w = 1/[σ2(Fo2) + (0.0774P)2 + 0.6059P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2692 reflectionsΔρmax = 0.44 e Å3
205 parametersΔρmin = −0.69 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50001.00000.00000.0423 (3)
S1−0.0367 (2)0.7797 (2)0.40422 (10)0.0484 (4)
S20.7893 (2)0.5558 (2)−0.03644 (12)0.0477 (4)
N10.6831 (7)0.8539 (6)−0.0062 (3)0.0417 (11)
N20.4011 (6)0.9385 (6)0.1283 (3)0.0349 (10)
N30.3261 (7)0.7924 (7)0.4413 (3)0.0486 (13)
N40.2304 (8)0.7563 (7)0.5165 (3)0.0489 (13)
N5−0.3536 (8)0.6276 (7)0.7101 (3)0.0511 (13)
O10.2491 (5)0.7683 (5)−0.0897 (3)0.0434 (9)
H1B0.13490.7366−0.07280.065*
H1C0.25960.6773−0.12230.065*
O2−0.6718 (6)0.4775 (6)0.8112 (3)0.0586 (12)
H2B−0.56870.52040.78800.088*
H2C−0.64150.45250.85820.088*
C10.7271 (8)0.7310 (8)−0.0188 (4)0.0347 (12)
C20.2117 (9)0.9123 (8)0.1465 (4)0.0436 (14)
H20.12230.92750.10430.052*
C30.1394 (9)0.8639 (8)0.2240 (4)0.0455 (14)
H30.00250.84070.23160.055*
C40.2713 (8)0.8505 (7)0.2895 (4)0.0379 (13)
C50.4715 (9)0.8795 (8)0.2725 (4)0.0475 (15)
H50.56600.87060.31500.057*
C60.5266 (9)0.9218 (8)0.1915 (4)0.0432 (14)
H60.66040.93970.18020.052*
C70.2060 (8)0.8066 (7)0.3769 (4)0.0395 (13)
C80.0424 (9)0.7481 (8)0.5080 (4)0.0418 (13)
C9−0.0929 (8)0.7148 (7)0.5800 (4)0.0379 (13)
C10−0.2927 (9)0.7063 (8)0.5682 (4)0.0442 (14)
H10−0.34400.72920.51600.053*
C11−0.4144 (9)0.6632 (8)0.6357 (4)0.0495 (15)
H11−0.54790.65930.62760.059*
C12−0.1584 (10)0.6393 (9)0.7221 (4)0.0559 (17)
H12−0.11120.61780.77570.067*
C13−0.0248 (9)0.6813 (8)0.6596 (4)0.0497 (15)
H130.10900.68710.67050.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0421 (6)0.0432 (6)0.0477 (6)0.0197 (5)0.0129 (4)0.0186 (5)
S10.0490 (9)0.0680 (11)0.0412 (9)0.0289 (8)0.0147 (7)0.0281 (8)
S20.0484 (9)0.0420 (9)0.0663 (11)0.0258 (7)0.0192 (8)0.0252 (8)
N10.044 (3)0.043 (3)0.052 (3)0.026 (2)0.015 (2)0.020 (2)
N20.032 (2)0.037 (3)0.038 (3)0.014 (2)0.009 (2)0.015 (2)
N30.045 (3)0.063 (3)0.043 (3)0.022 (3)0.012 (2)0.023 (3)
N40.048 (3)0.064 (3)0.041 (3)0.021 (3)0.014 (2)0.027 (3)
N50.050 (3)0.064 (4)0.044 (3)0.022 (3)0.017 (2)0.022 (3)
O10.035 (2)0.043 (2)0.051 (2)0.0140 (17)0.0117 (17)0.0118 (18)
O20.055 (3)0.059 (3)0.051 (3)0.013 (2)0.018 (2)0.011 (2)
C10.031 (3)0.045 (3)0.031 (3)0.014 (2)0.011 (2)0.016 (3)
C20.041 (3)0.052 (4)0.043 (3)0.018 (3)0.007 (3)0.023 (3)
C30.035 (3)0.056 (4)0.046 (3)0.013 (3)0.009 (3)0.022 (3)
C40.040 (3)0.034 (3)0.036 (3)0.011 (2)0.012 (2)0.009 (2)
C50.042 (3)0.064 (4)0.045 (4)0.026 (3)0.009 (3)0.025 (3)
C60.040 (3)0.054 (4)0.043 (3)0.022 (3)0.017 (3)0.020 (3)
C70.042 (3)0.039 (3)0.036 (3)0.014 (3)0.009 (3)0.012 (3)
C80.047 (3)0.043 (3)0.037 (3)0.017 (3)0.006 (3)0.014 (3)
C90.043 (3)0.035 (3)0.036 (3)0.015 (2)0.008 (2)0.012 (3)
C100.046 (3)0.053 (4)0.047 (3)0.026 (3)0.009 (3)0.026 (3)
C110.041 (3)0.052 (4)0.058 (4)0.020 (3)0.012 (3)0.017 (3)
C120.054 (4)0.075 (5)0.042 (4)0.023 (3)0.014 (3)0.026 (3)
C130.043 (3)0.066 (4)0.043 (4)0.022 (3)0.007 (3)0.023 (3)

Geometric parameters (Å, °)

Cu1—N12.071 (4)O2—H2C0.8159
Cu1—N1i2.071 (4)C2—C31.372 (8)
Cu1—O1i2.118 (4)C2—H20.9300
Cu1—O12.118 (4)C3—C41.365 (8)
Cu1—N22.178 (4)C3—H30.9300
Cu1—N2i2.178 (4)C4—C51.388 (8)
S1—C71.725 (6)C4—C71.485 (7)
S1—C81.726 (5)C5—C61.372 (7)
S2—C11.638 (6)C5—H50.9300
N1—C11.150 (7)C6—H60.9300
N2—C61.324 (7)C8—C91.479 (7)
N2—C21.325 (7)C9—C131.382 (7)
N3—C71.301 (7)C9—C101.384 (7)
N3—N41.375 (6)C10—C111.382 (8)
N4—C81.300 (7)C10—H100.9300
N5—C111.305 (7)C11—H110.9300
N5—C121.342 (8)C12—C131.372 (8)
O1—H1B0.8214C12—H120.9300
O1—H1C0.8200C13—H130.9300
O2—H2B0.8172
N1—Cu1—N1i180.000 (1)C4—C3—H3120.5
N1—Cu1—O1i89.03 (16)C2—C3—H3120.5
N1i—Cu1—O1i90.97 (16)C3—C4—C5118.0 (5)
N1—Cu1—O190.97 (16)C3—C4—C7121.8 (5)
N1i—Cu1—O189.03 (17)C5—C4—C7120.2 (5)
O1i—Cu1—O1180.0C6—C5—C4118.4 (5)
N1—Cu1—N291.15 (17)C6—C5—H5120.8
N1i—Cu1—N288.85 (17)C4—C5—H5120.8
O1i—Cu1—N286.47 (15)N2—C6—C5124.1 (5)
O1—Cu1—N293.53 (15)N2—C6—H6118.0
N1—Cu1—N2i88.85 (17)C5—C6—H6118.0
N1i—Cu1—N2i91.15 (17)N3—C7—C4124.0 (5)
O1i—Cu1—N2i93.53 (15)N3—C7—S1113.8 (4)
O1—Cu1—N2i86.47 (14)C4—C7—S1122.1 (4)
N2—Cu1—N2i180.0 (2)N4—C8—C9123.7 (5)
C7—S1—C887.1 (3)N4—C8—S1113.7 (4)
C1—N1—Cu1159.4 (4)C9—C8—S1122.6 (4)
C6—N2—C2116.5 (5)C13—C9—C10118.0 (5)
C6—N2—Cu1121.5 (4)C13—C9—C8119.9 (5)
C2—N2—Cu1122.0 (3)C10—C9—C8122.0 (5)
C7—N3—N4112.5 (5)C11—C10—C9118.6 (5)
C8—N4—N3112.8 (4)C11—C10—H10120.7
C11—N5—C12117.1 (5)C9—C10—H10120.7
Cu1—O1—H1B118.7N5—C11—C10124.0 (6)
Cu1—O1—H1C124.5N5—C11—H11118.0
H1B—O1—H1C108.3C10—C11—H11118.0
H2B—O2—H2C110.6N5—C12—C13123.5 (6)
N1—C1—S2179.8 (5)N5—C12—H12118.2
N2—C2—C3123.9 (5)C13—C12—H12118.2
N2—C2—H2118.0C12—C13—C9118.7 (6)
C3—C2—H2118.0C12—C13—H13120.6
C4—C3—C2119.0 (5)C9—C13—H13120.6

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···N50.822.032.835 (6)169
O2—H2C···S2ii0.822.903.541 (4)137
O1—H1B···S2iii0.822.503.303 (4)164
O1—H1C···O2iv0.821.952.761 (6)171

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2330).

References

  • Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc.125, 8595–8613. [PubMed]
  • Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngComm.7, 96–101.
  • Zhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437–2446.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography