PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o786.
Published online 2008 April 2. doi:  10.1107/S1600536808008362
PMCID: PMC2961084

N-Methyl-1-oxoisoindoline-2-carboxamide monohydrate

Abstract

The title compound, C10H10N2O2·H2O, is dimerized by inversion-related inter­molecular N—H(...)O hydrogen bonding. There is an intra­molecular N—H(...)O bond, resulting in a six-membered ring. Each dimer inter­acts with other dimers through hydrogen bonding with water mol­ecules. The water mol­ecules are linked to each other in a stair-like chain, thus generating two-dimensional polymeric strips. The dimers are also linked to each other through inter­molecular C—H(...)O hydrogen bonding. There are π–π inter­actions between the aromatic and heterocyclic five-membered rings [centroid–centroid distance 3.8360 (12) Å]. C—H(...)π inter­actions also exist between CH2 groups and aromatic rings.

Related literature

For related literature, see: Alberto et al. (1994 [triangle]); Berger et al. (1999 [triangle]); Cignarella et al. (1981 [triangle]); Maliha et al. (2008 [triangle]); Mancilla et al. (2007 [triangle]); Toru et al. (1986 [triangle]); Wan et al. (2007 [triangle]); Straub et al. (2007 [triangle]); Maliha et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o786-scheme1.jpg

Experimental

Crystal data

  • C10H10N2O2·H2O
  • M r = 208.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o786-efi1.jpg
  • a = 7.4264 (4) Å
  • b = 29.0200 (16) Å
  • c = 4.8864 (2) Å
  • β = 108.266 (3)°
  • V = 1000.02 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 (2) K
  • 0.22 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.990
  • 18083 measured reflections
  • 2518 independent reflections
  • 1586 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.130
  • S = 1.05
  • 2518 reflections
  • 145 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008362/bq2071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008362/bq2071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for providing the Kappa APEXII CCD diffractometer.

supplementary crystallographic information

Comment

Isoindole and their derivatives are known to be active-compounds pharmaceutically (Straub et al., 2007; Mancilla et al., 2007). They are important intermediates in the synthesis of novel multi-drugs resistance reversal agents (Berger et al., 1999). They show diuretic, anti-anginal, cardio-vascular and herbicidal activitities (Alberto et al., 1994; Cignarella et al., 1981; Toru et al., 1986).

The title compound (I) is in continuation to the synthesis of various isoindoles and the determination of their structures by X-ray crystallography (Maliha et al., 2007; 2008). It was isolated during the studies of the reaction of urea and its N-alkyl/aryl derivates with o-phthaldehyde.

The present structure shows that replacing the H-atom of 1-Oxoisoindoline-2- carboxamide (Maliha et al., 2008) with CH3 group, is possible in the presence of crystallization water only. The replacement of H-atom of 1-Oxoisoindoline-2-carboxamide with ethyl group (Wan et al., 2007) also shows the existence of crystallizing H2O. Although the bond distances and bond angles in the aromatic A(C2—C7) and five-membered ring B(C1/C2/C7/C8/N1) are comparable with the reported structures (Maliha et al., 2008; Wan et al., 2007), but the packing through H-bonding is entirely different. There is an intramolecular hydrogen bond of N2—H2···O1 resulting in a six-membered ring. The title compound is dimerized by inversion of N-methyl-1-oxo-1,3-dihydro-2H-isoindole-2-carboxamide through intermolecular H-bond viz N2—H2···O1i [symmetry code i = -x,-y,-z] and the central ring is of four members depending upon these H-bonds only. The role of H2O molecules is to stabilize the dimers through an interesting H-bonding. The H-bond O3—H1W···O2ii [symmetry code ii = x + 1, y, z] connects the dimers, while the O3—H2W···O3iii [symmetry code iii = x, -y + 1/2, z - 1/2] joints the water molecules in a stair like chain. In this way two-dimensional polymeric strip is realized. These polymeric strips are further connected by the involvement of aromatic ring A(C2—C7) through intermolecular H-bonds C4—H4···O2iv [symmetry code iv = x + 1, y, z - 1]. The detail of H-bonding is given in Table 1 and shown in Fig. 2. The π-π interaction exist between the CgA···CgBv [symmetry code v = x,y,z - 1] and CgB···CgAvi [symmetry code vi = x,y,z + 1] having same centroid-centroid distance of 3.8360 (12) Å. The C—H···π interaction exists between C8—H8A and CgAvi [symmetry code vi = x,y,z + 1] with H8A···π distance of 2.86 Å.

Experimental

A mixture of o-phthaldehyde (0.67 g, 200 mmol) and N-methylurea (0.37 g, 200 mmol) in 100 ml of ethanol was refluxed for 10 h. The solvent was taken off and flask contents were left at room temperature. The crystals of (I) were isolated, washed with ethanol, ether and n-hexane, respectively and dried. Crystals suitable for X-ray diffraction were grown from a mixture of methanol-acetone (1:1) by slow evaporation at room temperature. It is soluble in DMSO, DMF, acetone, ethyl acetate, chloroform and carbon tetrachloride. M.P: 413 K; yield: 60 percent.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl C-atoms and constrained to ride on their parent atoms. The H-atoms attached to N2 and O3 atoms were located in fourier synthesis and their coordinates were refined. The thermal parameter of H-atoms of methyl group was taken 1.5 times of the parent C-atom, whereas for all other H-atoms it was taken 1.2 times of their parent atoms.

Figures

Fig. 1.
The ORTEP diagram of the title compound (I) with displacement ellipsoids at 50% probability level; intramolecular interaction has been indicated by broken line. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the H-bonding and the overlapping of rings which generate π-π interaction.

Crystal data

C10H10N2O2·H2OF000 = 440
Mr = 208.22Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1295 reflections
a = 7.4264 (4) Åθ = 1.4–28.5º
b = 29.0200 (16) ŵ = 0.10 mm1
c = 4.8864 (2) ÅT = 296 (2) K
β = 108.266 (3)ºNeedle, colourless
V = 1000.02 (9) Å30.22 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2518 independent reflections
Radiation source: fine-focus sealed tube1586 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
Detector resolution: 7.40 pixels mm-1θmax = 28.5º
T = 296(2) Kθmin = 1.4º
ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −38→38
Tmin = 0.980, Tmax = 0.990l = −6→6
18083 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.045P)2 + 0.3992P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2518 reflectionsΔρmax = 0.23 e Å3
145 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1330 (2)0.04176 (5)−0.0048 (4)0.0582 (4)
O2−0.17938 (19)0.12874 (4)0.3549 (3)0.0452 (4)
O30.8077 (3)0.22691 (6)0.4262 (4)0.0721 (6)
H1W0.815 (4)0.1993 (11)0.404 (6)0.086*
H2W0.812 (4)0.2398 (10)0.266 (6)0.086*
N10.0204 (2)0.11191 (5)0.0993 (3)0.0357 (4)
N2−0.1470 (3)0.05442 (6)0.2455 (4)0.0477 (5)
H2−0.088 (3)0.0368 (8)0.170 (5)0.057*
C10.1337 (3)0.08376 (6)−0.0065 (4)0.0377 (4)
C20.2523 (3)0.11487 (6)−0.1134 (4)0.0364 (4)
C30.3901 (3)0.10422 (7)−0.2420 (4)0.0456 (5)
H30.41750.0738−0.27330.055*
C40.4848 (3)0.14010 (8)−0.3213 (5)0.0498 (5)
H40.57710.1339−0.40830.060*
C50.4434 (3)0.18515 (8)−0.2725 (5)0.0519 (6)
H50.50990.2089−0.32480.062*
C60.3054 (3)0.19572 (7)−0.1477 (5)0.0487 (5)
H60.27760.2262−0.11780.058*
C70.2099 (3)0.15985 (6)−0.0683 (4)0.0366 (4)
C80.0559 (3)0.16101 (6)0.0683 (4)0.0388 (4)
H8A0.09760.17630.25410.047*
H8B−0.05640.1764−0.05450.047*
C9−0.1088 (3)0.09905 (6)0.2436 (4)0.0353 (4)
C10−0.2783 (3)0.03691 (7)0.3864 (5)0.0572 (6)
H10A−0.25840.00440.41960.086*
H10B−0.40610.04230.26560.086*
H10C−0.25740.05240.56710.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0756 (11)0.0306 (8)0.0904 (12)0.0029 (7)0.0575 (9)−0.0003 (7)
O20.0536 (8)0.0382 (8)0.0563 (9)0.0004 (6)0.0352 (7)−0.0060 (6)
O30.1328 (17)0.0403 (9)0.0591 (10)0.0134 (10)0.0530 (11)−0.0006 (8)
N10.0431 (9)0.0303 (8)0.0412 (9)0.0006 (7)0.0242 (7)0.0002 (6)
N20.0618 (12)0.0345 (10)0.0632 (12)0.0022 (8)0.0432 (10)0.0014 (8)
C10.0434 (11)0.0340 (11)0.0425 (10)0.0024 (8)0.0231 (8)−0.0003 (8)
C20.0382 (10)0.0383 (10)0.0363 (10)−0.0004 (8)0.0170 (8)0.0001 (7)
C30.0469 (12)0.0447 (12)0.0534 (12)0.0026 (9)0.0275 (10)−0.0007 (9)
C40.0414 (12)0.0589 (14)0.0581 (13)−0.0022 (10)0.0283 (10)0.0023 (10)
C50.0484 (13)0.0526 (14)0.0610 (14)−0.0120 (10)0.0260 (11)0.0046 (10)
C60.0586 (14)0.0367 (11)0.0572 (13)−0.0086 (10)0.0274 (11)−0.0032 (9)
C70.0404 (11)0.0378 (10)0.0344 (10)−0.0026 (8)0.0157 (8)−0.0028 (7)
C80.0480 (12)0.0307 (10)0.0445 (11)−0.0010 (8)0.0245 (9)−0.0019 (8)
C90.0399 (10)0.0359 (10)0.0347 (10)0.0011 (8)0.0185 (8)0.0011 (7)
C100.0680 (15)0.0460 (13)0.0749 (16)−0.0033 (11)0.0475 (13)0.0046 (11)

Geometric parameters (Å, °)

O1—C11.219 (2)C3—H30.9300
O2—C91.221 (2)C4—C51.381 (3)
O3—H1W0.81 (3)C4—H40.9300
O3—H2W0.88 (3)C5—C61.381 (3)
N1—C11.384 (2)C5—H50.9300
N1—C91.408 (2)C6—C71.382 (3)
N1—C81.466 (2)C6—H60.9300
N2—C91.326 (2)C7—C81.495 (2)
N2—C101.451 (2)C8—H8A0.9700
N2—H20.83 (2)C8—H8B0.9700
C1—C21.467 (2)C10—H10A0.9600
C2—C71.377 (3)C10—H10B0.9600
C2—C31.393 (2)C10—H10C0.9600
C3—C41.378 (3)
H1W—O3—H2W106 (3)C5—C6—C7118.27 (19)
C1—N1—C9128.36 (15)C5—C6—H6120.9
C1—N1—C8112.66 (14)C7—C6—H6120.9
C9—N1—C8118.83 (14)C2—C7—C6120.43 (17)
C9—N2—C10121.47 (17)C2—C7—C8109.75 (15)
C9—N2—H2117.0 (16)C6—C7—C8129.82 (17)
C10—N2—H2121.4 (16)N1—C8—C7102.22 (14)
O1—C1—N1125.66 (16)N1—C8—H8A111.3
O1—C1—C2128.49 (16)C7—C8—H8A111.3
N1—C1—C2105.84 (15)N1—C8—H8B111.3
C7—C2—C3121.29 (17)C7—C8—H8B111.3
C7—C2—C1109.52 (15)H8A—C8—H8B109.2
C3—C2—C1129.19 (17)O2—C9—N2124.32 (16)
C4—C3—C2118.08 (19)O2—C9—N1119.40 (16)
C4—C3—H3121.0N2—C9—N1116.28 (15)
C2—C3—H3121.0N2—C10—H10A109.5
C3—C4—C5120.40 (18)N2—C10—H10B109.5
C3—C4—H4119.8H10A—C10—H10B109.5
C5—C4—H4119.8N2—C10—H10C109.5
C4—C5—C6121.52 (19)H10A—C10—H10C109.5
C4—C5—H5119.2H10B—C10—H10C109.5
C6—C5—H5119.2
C9—N1—C1—O14.1 (3)C3—C2—C7—C8179.20 (18)
C8—N1—C1—O1179.5 (2)C1—C2—C7—C8−1.0 (2)
C9—N1—C1—C2−175.17 (17)C5—C6—C7—C20.0 (3)
C8—N1—C1—C20.2 (2)C5—C6—C7—C8−179.8 (2)
O1—C1—C2—C7−178.7 (2)C1—N1—C8—C7−0.8 (2)
N1—C1—C2—C70.5 (2)C9—N1—C8—C7175.07 (15)
O1—C1—C2—C31.0 (4)C2—C7—C8—N11.1 (2)
N1—C1—C2—C3−179.76 (19)C6—C7—C8—N1−179.0 (2)
C7—C2—C3—C40.5 (3)C10—N2—C9—O2−0.6 (3)
C1—C2—C3—C4−179.19 (19)C10—N2—C9—N1−179.81 (19)
C2—C3—C4—C50.3 (3)C1—N1—C9—O2170.66 (18)
C3—C4—C5—C6−0.9 (3)C8—N1—C9—O2−4.5 (3)
C4—C5—C6—C70.8 (3)C1—N1—C9—N2−10.0 (3)
C3—C2—C7—C6−0.7 (3)C8—N1—C9—N2174.80 (17)
C1—C2—C7—C6179.08 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.83 (3)2.08 (2)2.748 (3)137 (2)
N2—H2···O1i0.83 (2)2.41 (2)3.043 (2)134 (2)
O3—H1W···O2ii0.81 (3)2.06 (3)2.875 (2)177 (3)
O3—H2W···O3iii0.88 (3)1.91 (3)2.787 (3)174 (3)
C4—H4···O2iv0.932.443.362 (3)172
C8—H8A···Cg1v0.972.863.590 (2)133

Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2; (iv) x+1, y, z−1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2071).

References

  • Alberto, S., Silvio, L., Francesca, B., Roberta, C. & Piero, S. (1994). US Patent No. 5 376 673.
  • Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem.42, 2145–2161. [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Cignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem.24, 1003–1010. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.
  • Maliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, o626. [PMC free article] [PubMed]
  • Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc.51, 96–102.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Straub, A., Lampe, T., Pohlmann, J., Rohrig, S., Perzborn, E. & Schlemmer, K.-H. (2007). US Patent No. 7 189 738.
  • Toru, H., Eiki, N., Ryo, Y. & Shunichi, H. (1986). US Patent No. 4 595 409.
  • Wan, J., Wu, B. & Pan, Y. (2007). Tetrahedron, 63, 9338–9344.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography