PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m648.
Published online 2008 April 10. doi:  10.1107/S1600536808009471
PMCID: PMC2961080

Aqua­bis(1H-imidazole-κN 3)bis­(4-methyl­benzoato)-κOO,O′-nickel(II)

Abstract

In the mononuclear title compound, [Ni(C8H7O2)2(C3H4N2)2(H2O)], the NiII atom is coordinated by three carboxylate O atoms (from a bidentate 4-methyl­benzoate ligand and a monodentate 4-methyl­benzoate ligand), two N atoms (from two imidazole ligands) and a water mol­ecule in an octa­hedral geometry. Inter­molecular O—H(...)O hydrogen-bonding inter­actions lead to infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular N—H(...)O hydrogen-bonding inter­actions and π–π stacking [centroid–centroid distance = 3.717 (2) Å].

Related literature

For related literature, see: Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m648-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O2)2(C3H4N2)2(H2O)]
  • M r = 483.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m648-efi1.jpg
  • a = 18.9456 (12) Å
  • b = 5.8755 (4) Å
  • c = 20.3209 (14) Å
  • β = 101.813 (4)°
  • V = 2214.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 296 (2) K
  • 0.30 × 0.26 × 0.25 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.770, T max = 0.803
  • 20580 measured reflections
  • 3776 independent reflections
  • 2815 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.171
  • S = 1.07
  • 3776 reflections
  • 297 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009471/ng2442sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009471/ng2442Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, imidazole and nickel chloride in alkaline aqueous solution.

As illustrated in Figure 1, the NiII atom exists in a disordered octahedral environment, defined by three carboxyl O atoms from one bisdentate 4-methylbenzate ligand and one monodentate 4-methylbenzate ligand, two N atoms from two imidazole ligands and one water molecule. Intermolecular O—H···O hydrogen bonding interactions (Table 1) form infinite chains involving the coordinating water molecule as donors and O atoms of 4-methylbenzate ligands as acceptors, which are further self-assembled into a supramolecular network through intermolecular N—H···O hydrogen bonding interactions and π-π stacking interactions of neighboring complexes, with a centroid-centroid distance of 3.717 (2) Å. (Fig. 2).

Experimental

A mixture of nickel chloride(1 mmol), 4-methylbenzoic acid (1 mmol), imidazole(1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
Fig. 2.
The packing of structure (I).

Crystal data

[Ni(C8H7O2)2(C3H4N2)2(H2O)]F000 = 1008
Mr = 483.16Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3600 reflections
a = 18.9456 (12) Åθ = 1.4–28º
b = 5.8755 (4) ŵ = 0.92 mm1
c = 20.3209 (14) ÅT = 296 (2) K
β = 101.813 (4)ºBlock, blue
V = 2214.1 (3) Å30.30 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3776 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 296(2) Kθmax = 25.2º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −22→22
Tmin = 0.770, Tmax = 0.803k = −7→7
20580 measured reflectionsl = −22→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171  w = 1/[σ2(Fo2) + (0.1064P)2 + 0.0659P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3776 reflectionsΔρmax = 1.02 e Å3
297 parametersΔρmin = −0.71 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.68032 (18)0.0732 (7)0.9997 (2)0.0328 (10)
C20.72717 (19)0.1141 (7)1.0678 (2)0.0318 (10)
C30.7618 (2)0.3198 (8)1.0827 (2)0.0434 (12)
H30.75520.43521.05070.052*
C40.8066 (2)0.3558 (9)1.1451 (3)0.0515 (13)
H40.83020.49491.15380.062*
C50.8171 (2)0.1911 (9)1.1943 (3)0.0450 (12)
C60.7816 (2)−0.0143 (9)1.1796 (3)0.0532 (13)
H60.7875−0.12861.21190.064*
C70.7377 (2)−0.0515 (8)1.1177 (3)0.0473 (12)
H70.7144−0.19101.10900.057*
C80.8676 (3)0.2326 (11)1.2602 (3)0.0676 (17)
H8A0.91360.16551.25930.101*
H8B0.84820.16551.29570.101*
H8C0.87330.39351.26770.101*
C90.56235 (18)0.1063 (7)0.7571 (2)0.0291 (9)
C100.51866 (17)0.0039 (6)0.6958 (2)0.0282 (9)
C110.5069 (2)0.1198 (8)0.6345 (2)0.0402 (11)
H110.52710.26330.63250.048*
C120.4665 (2)0.0269 (8)0.5775 (2)0.0463 (12)
H120.45930.10880.53750.056*
C130.4360 (2)−0.1874 (8)0.5782 (3)0.0442 (12)
C140.4474 (2)−0.3059 (8)0.6384 (3)0.0406 (12)
H140.4271−0.44960.63980.049*
C150.4884 (2)−0.2135 (7)0.6964 (2)0.0351 (11)
H150.4960−0.29640.73620.042*
C160.3904 (3)−0.2924 (10)0.5148 (3)0.0693 (17)
H16A0.4187−0.30310.48070.104*
H16B0.3490−0.19850.49890.104*
H16C0.3750−0.44170.52490.104*
C170.49535 (19)0.5721 (7)0.8861 (2)0.0373 (11)
H170.50790.70420.86600.045*
C180.4381 (2)0.5510 (8)0.9164 (2)0.0433 (12)
H180.40470.66270.92100.052*
C190.4959 (2)0.2304 (8)0.9211 (3)0.0411 (12)
H190.50830.07870.93010.049*
C200.7912 (2)0.2900 (8)0.8792 (3)0.0495 (14)
H200.79470.39480.91400.059*
C210.7474 (2)0.0663 (7)0.7991 (2)0.0420 (11)
H210.7152−0.01600.76710.050*
N40.81940 (17)0.0528 (6)0.8074 (2)0.0467 (10)
H220.8430−0.03060.78460.056*
N10.53185 (15)0.3705 (6)0.88955 (18)0.0333 (8)
N20.43972 (17)0.3329 (7)0.93841 (19)0.0413 (10)
H20.40980.27160.95980.050*
N30.72811 (16)0.2084 (5)0.84118 (19)0.0322 (9)
C220.8477 (2)0.1935 (9)0.8579 (3)0.0499 (14)
H4A0.89640.21990.87490.060*
Ni10.62851 (2)0.29313 (8)0.86285 (3)0.0263 (2)
O10.67349 (15)0.2409 (5)0.95998 (16)0.0380 (8)
O20.65064 (15)−0.1153 (5)0.98695 (15)0.0437 (8)
O30.57902 (13)−0.0107 (4)0.80995 (15)0.0338 (7)
O40.58228 (13)0.3134 (4)0.75769 (15)0.0300 (7)
O1W0.66137 (13)0.6312 (5)0.87438 (15)0.0344 (7)
H1W0.6334 (14)0.721 (6)0.887 (2)0.052*
H2W0.7005 (9)0.663 (7)0.896 (2)0.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0320 (19)0.036 (2)0.034 (3)0.0060 (16)0.0155 (18)−0.002 (2)
C20.0314 (18)0.038 (2)0.027 (3)0.0003 (17)0.0100 (17)0.001 (2)
C30.049 (2)0.042 (3)0.036 (3)−0.0022 (19)0.002 (2)0.009 (2)
C40.047 (2)0.053 (3)0.050 (4)−0.008 (2)0.001 (2)−0.005 (3)
C50.035 (2)0.069 (3)0.029 (3)0.005 (2)0.0035 (19)0.002 (3)
C60.054 (3)0.068 (3)0.035 (3)0.002 (2)0.001 (2)0.021 (3)
C70.048 (2)0.047 (3)0.046 (3)−0.007 (2)0.006 (2)0.004 (2)
C80.050 (3)0.107 (5)0.043 (4)0.002 (3)0.001 (3)0.001 (3)
C90.0326 (18)0.026 (2)0.031 (3)0.0049 (16)0.0122 (17)0.001 (2)
C100.0306 (18)0.030 (2)0.026 (3)0.0001 (15)0.0104 (16)0.0001 (19)
C110.046 (2)0.034 (2)0.041 (3)−0.0007 (19)0.011 (2)−0.002 (2)
C120.057 (3)0.048 (3)0.032 (3)0.003 (2)0.005 (2)0.004 (2)
C130.036 (2)0.055 (3)0.042 (3)−0.0048 (19)0.008 (2)−0.012 (3)
C140.038 (2)0.040 (3)0.044 (4)−0.0082 (17)0.008 (2)−0.008 (2)
C150.039 (2)0.030 (2)0.038 (3)−0.0015 (16)0.0107 (19)−0.001 (2)
C160.070 (3)0.079 (4)0.057 (5)−0.020 (3)0.008 (3)−0.025 (3)
C170.036 (2)0.034 (2)0.044 (3)−0.0018 (16)0.0125 (18)−0.007 (2)
C180.036 (2)0.052 (3)0.045 (3)0.0025 (19)0.014 (2)−0.013 (2)
C190.040 (2)0.042 (3)0.043 (3)−0.0010 (18)0.010 (2)0.000 (2)
C200.034 (2)0.060 (3)0.056 (4)−0.0034 (19)0.013 (2)−0.016 (3)
C210.043 (2)0.036 (2)0.049 (3)0.0004 (18)0.015 (2)−0.008 (2)
N40.0425 (19)0.045 (2)0.059 (3)0.0097 (16)0.0251 (18)−0.005 (2)
N10.0318 (16)0.0358 (19)0.035 (2)−0.0025 (14)0.0123 (14)0.0007 (17)
N20.0344 (17)0.058 (3)0.037 (3)−0.0090 (16)0.0194 (16)−0.006 (2)
N30.0329 (16)0.0297 (18)0.036 (3)0.0001 (13)0.0130 (15)−0.0062 (17)
C220.034 (2)0.064 (3)0.055 (4)0.000 (2)0.016 (2)−0.001 (3)
Ni10.0288 (3)0.0243 (3)0.0276 (4)0.00023 (17)0.0098 (2)0.0002 (2)
O10.0404 (15)0.0427 (18)0.030 (2)0.0005 (12)0.0042 (13)0.0050 (14)
O20.0580 (17)0.0408 (18)0.035 (2)−0.0158 (15)0.0168 (14)−0.0062 (16)
O30.0400 (14)0.0276 (15)0.032 (2)−0.0014 (11)0.0030 (12)0.0030 (14)
O40.0374 (14)0.0249 (15)0.0286 (19)−0.0026 (11)0.0090 (12)0.0007 (13)
O1W0.0316 (13)0.0292 (15)0.044 (2)−0.0014 (12)0.0124 (13)−0.0067 (14)

Geometric parameters (Å, °)

C1—O21.245 (5)C15—H150.9300
C1—O11.264 (5)C16—H16A0.9600
C1—C21.503 (6)C16—H16B0.9600
C2—C31.379 (6)C16—H16C0.9600
C2—C71.389 (6)C17—C181.359 (6)
C3—C41.391 (6)C17—N11.366 (5)
C3—H30.9300C17—H170.9300
C4—C51.376 (7)C18—N21.356 (6)
C4—H40.9300C18—H180.9300
C5—C61.384 (7)C19—N11.315 (5)
C5—C81.497 (7)C19—N21.333 (5)
C6—C71.376 (6)C19—H190.9300
C6—H60.9300C20—C221.359 (6)
C7—H70.9300C20—N31.370 (5)
C8—H8A0.9600C20—H200.9300
C8—H8B0.9600C21—N31.300 (5)
C8—H8C0.9600C21—N41.342 (5)
C9—O31.260 (5)C21—H210.9300
C9—O41.274 (5)N4—C221.341 (6)
C9—C101.475 (6)N4—H220.8600
C10—C111.396 (6)N1—Ni12.065 (3)
C10—C151.401 (5)N2—H20.8600
C11—C121.365 (6)N3—Ni12.084 (3)
C11—H110.9300C22—H4A0.9300
C12—C131.387 (6)Ni1—O12.007 (3)
C12—H120.9300Ni1—O1W2.081 (3)
C13—C141.385 (7)Ni1—O42.140 (3)
C13—C161.526 (7)Ni1—O32.193 (3)
C14—C151.383 (6)O1W—H1W0.826 (10)
C14—H140.9300O1W—H2W0.805 (10)
O2—C1—O1125.3 (4)H16B—C16—H16C109.5
O2—C1—C2119.4 (4)C18—C17—N1109.9 (4)
O1—C1—C2115.3 (4)C18—C17—H17125.1
C3—C2—C7117.6 (4)N1—C17—H17125.1
C3—C2—C1120.4 (4)N2—C18—C17105.6 (4)
C7—C2—C1121.9 (4)N2—C18—H18127.2
C2—C3—C4120.5 (4)C17—C18—H18127.2
C2—C3—H3119.8N1—C19—N2111.5 (4)
C4—C3—H3119.8N1—C19—H19124.2
C5—C4—C3121.7 (5)N2—C19—H19124.2
C5—C4—H4119.1C22—C20—N3109.1 (4)
C3—C4—H4119.1C22—C20—H20125.4
C4—C5—C6117.7 (4)N3—C20—H20125.4
C4—C5—C8120.3 (5)N3—C21—N4111.7 (4)
C6—C5—C8121.9 (5)N3—C21—H21124.1
C7—C6—C5120.8 (5)N4—C21—H21124.1
C7—C6—H6119.6C22—N4—C21107.3 (4)
C5—C6—H6119.6C22—N4—H22126.4
C6—C7—C2121.7 (4)C21—N4—H22126.4
C6—C7—H7119.2C19—N1—C17105.1 (3)
C2—C7—H7119.2C19—N1—Ni1124.4 (3)
C5—C8—H8A109.5C17—N1—Ni1130.1 (3)
C5—C8—H8B109.5C19—N2—C18107.8 (4)
H8A—C8—H8B109.5C19—N2—H2126.1
C5—C8—H8C109.5C18—N2—H2126.1
H8A—C8—H8C109.5C21—N3—C20105.4 (3)
H8B—C8—H8C109.5C21—N3—Ni1132.9 (3)
O3—C9—O4119.4 (4)C20—N3—Ni1121.3 (3)
O3—C9—C10119.8 (4)N4—C22—C20106.5 (4)
O4—C9—C10120.8 (4)N4—C22—H4A126.8
C11—C10—C15117.5 (4)C20—C22—H4A126.8
C11—C10—C9120.9 (4)O1—Ni1—N189.78 (13)
C15—C10—C9121.6 (4)O1—Ni1—O1W88.76 (12)
C12—C11—C10121.4 (4)N1—Ni1—O1W91.21 (12)
C12—C11—H11119.3O1—Ni1—N387.18 (13)
C10—C11—H11119.3N1—Ni1—N3176.89 (14)
C11—C12—C13121.1 (5)O1W—Ni1—N389.37 (11)
C11—C12—H12119.4O1—Ni1—O4174.26 (11)
C13—C12—H12119.4N1—Ni1—O492.66 (12)
C14—C13—C12118.4 (4)O1W—Ni1—O496.38 (11)
C14—C13—C16120.1 (5)N3—Ni1—O490.32 (12)
C12—C13—C16121.5 (5)O1—Ni1—O3114.23 (12)
C15—C14—C13120.9 (4)N1—Ni1—O389.70 (12)
C15—C14—H14119.5O1W—Ni1—O3157.00 (12)
C13—C14—H14119.5N3—Ni1—O390.96 (11)
C14—C15—C10120.6 (4)O4—Ni1—O360.62 (10)
C14—C15—H15119.7C1—O1—Ni1135.7 (3)
C10—C15—H15119.7C9—O3—Ni188.9 (2)
C13—C16—H16A109.5C9—O4—Ni190.9 (2)
C13—C16—H16B109.5Ni1—O1W—H1W116 (3)
H16A—C16—H16B109.5Ni1—O1W—H2W120 (3)
C13—C16—H16C109.5H1W—O1W—H2W104.8 (17)
H16A—C16—H16C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3i0.826 (10)2.31 (4)2.782 (4)116 (4)
O1W—H1W···O2i0.826 (10)2.21 (3)2.772 (4)126 (3)
N2—H2···O2ii0.861.962.816 (5)175
N4—H22···O4iii0.862.022.865 (4)167

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2442).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography