PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m610–m611.
Published online 2008 April 2. doi:  10.1107/S1600536808008404
PMCID: PMC2961079

Bis(chloro­acetato)-κ2 O,O′;κO-methanol-κO-bis­(2-methyl­furo[3,2-c]pyridine-κN)copper(II)

Abstract

In the title compound, [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)], the Cu2+ ion has a highly distorted square-bipyramidal (4 + 1 + 1) coordination environment and is bonded to three carboxyl­ate O atoms of two chloro­acetate anions (monodentate and asymmetrically bidentate), two pyridine N atoms of 2-methyl­furo[3,2-c]pyridine and one methanol O atom. There is an intra­molecular O—H(...)O hydrogen bond. Inter­molecular C—H(...)O hydrogen bonds result in the formation of a three-dimensional network and π–π stacking inter­actions [3.44–3.83 Å] are observed between symmetry-related rings of 2-methyl­furo[3,2-c]pyridine. Further inter­actions in the crystal structure are a short Cl(...)Cl inter­action [3.384 (2)Å] and C—H(...)π inter­actions between 2-methyl­furo[3,2-c]pyridine rings.

Related literature

For general background, see: Desiraju (1995 [triangle]); Janiak (2000 [triangle]); Suezawa et al. (2002 [triangle]). For related literature, see: Baran et al. (2005 [triangle]); Eloy & Deryckere (1971 [triangle]); Ivaniková et al. (2006 [triangle]); Mikloš et al. (2005 [triangle]); Miklovič et al. (2004 [triangle]); New et al. (1989 [triangle]); Segľa et al. (2005 [triangle]); Titiš et al. (2007 [triangle]); Vrábel et al. (2007a [triangle],b [triangle]). For similar structures, see: Borel et al. (1978 [triangle]); Moncol et al. (2007 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m610-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]
  • M r = 548.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m610-efi14.jpg
  • a = 19.860 (3) Å
  • b = 15.576 (3) Å
  • c = 15.017 (3) Å
  • β = 97.917 (3)°
  • V = 4600.9 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.23 mm−1
  • T = 173 (2) K
  • 0.26 × 0.20 × 0.16 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.776, T max = 0.891 (expected range = 0.716–0.822)
  • 16690 measured reflections
  • 4021 independent reflections
  • 3093 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.103
  • S = 1.02
  • 4021 reflections
  • 300 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008404/om2220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008404/om2220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor R. Sillanpää for measuring the diffraction data and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (1/4454/07 and 1/0353/08) for financial support.

supplementary crystallographic information

Comment

Furopyridines are components of many biologically active compounds, for example the furo[3,2-c]pyridine ring system has potential antipsychotic activity (New et al., 1989). The furo[3,2-c]pyridine and its derivatives can be readily coordinated to metal centers through the pyridine N-donor atom (Baran et al., 2005; Ivaniková et al., 2006; Mikloš et al. (2005); Miklovič et al., 2004; Segľa et al. (2005); Titiš et al., 2007; Vrábel et al., 2007a,b). As part of our efforts to investigate metal(II) complexes based on furo[3,2-c]pyridine derivatives, we describe the X-ray characterization of the title compound.

In the title compound, the CuII atom is six-coordinated by two carboxylate O atoms of the asymmetrically chelating bidentate chloroacetate anion [Cu1–O4 = 1.964 (2) and Cu–O5 = 2.833 (2) Å], one carboxylate O atom of the monodentate chloroacetate anion [Cu1–O8 = 1.956 (2) Å], two N atoms of pyridine rings of 2-methylfuro[3,2-c]pyridine [Cu1–N11 = 2.046 (3) and Cu1–N21 = 2.031 (3) Å] and one O atom of methanol molecule [Cu1–O1 = 2.311 (2) Å], resulting in highly distorted square-bipyramidal geometry (Fig. 1). The intramolecular O–H···O hydrogen bond forms a six-membered metallocycle (Fig. 1).

The bond lengths and angles may be compared with the corresponding values in similar complexes, with axial water molecule [aquabis(benzoato)bis(γ-picoline)copper(II) (II) (refcode: BZGPCU10, Borel et al., 1978); aquabis(3-pyridylacrylato)bis(3-pyridylmethanol)copper(II) (III), (refcode: XEYTAX, Moncol et al., 2007); aquabis(acetato)bis(2-(3-pyridyl)-5-(4-pyridyl)-1,3,4-oxadiazole)copper(II) (IV), (refcode: QAQNOM, Wang et al., 2005)]. In the molecular structure of all three complexes (II–IV), there is highly distorted square-bipyramidal (4 + 1 + 1) coordination environment, the longer Cu–O bond distances for asymmetrically chelating bidentate carboxylate anions are in the range of 2.61–2.78 Å.

The hydrogen-bond parameters of the title compound are listed in Table 2. The molecules of the title compound are linked through weak C–H···O hydrogen-bonding interactions (Figures 2 and 3), where acceptor atoms of hydrogen-bonds are carboxylate O atoms (O5 and O9). As can be seen in Figure 2, there are observed also short Cl2···Cl2vi [symmetry code: (vi) -x + 2, y, -z + 1/2] contacts (Desiraju, 1995) of 3.384 (2)Å between the molecules of the title compound. The additional interactions are the π-π stacking interactions (Janiak, 2000), between the two adjacent furo[3,2-c]pyridine rings, [N21/C22—C25/O27/C28—C30] (πa) and [N11/C12—C15/O17/C18—C20] (πb). Four 2-methylfuro[3,2-c]pyridine rings are stacked in the order πba···πaa···πab (Figure 2). The distances between πaaiii and πabvii [symmetry codes: (iii) -x + 1, y, -z + 1/2, (vii) -x + 3/2, y + 1/2, -z + 1/2] 2-methylfuro[3,2-c]pyridine rings are in ranges 3.44–3.66 Å and 3.45–3.83 Å, respectively. The CH/π interaction (Suezawa et al., 2002) is also observed between methyl H atom of the methanol ligand and furan ring of 2-methylfuro[3,2-c]pyridine [C1–H1B···πbviii, symmetry code: (viii) x, -y + 1, z - 1/2] (Figure 3). The distances Datm (interatomic distance H1B/C14) and Dpln (H/π-plane distance) (Suezawa et al., 2002) are 2.77 and 2.85 Å, respectively.

Experimental

The organic compounds 2-methylfuro[3,2-c]pyridine (Mefpy) has been prepared using procedure described in Eloy & Deryckere (1971). Complex Cu(C2H2ClO2)2.2H2O (0.002 mol, 0.57 g) was dissolved in 30 cm3 of methanol and treated with a methanolic solution of Mefpy (0.004 mol, 0.53 g, 10 cm3 me thanol) in a molar ratio of 1:2. The mixture was stirred and left to stand at room temperature giving a crystalline compound of [Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]. The Anal. Calc.: C, 45.95; H, 4.04; N, 5.10; Cu, 11.58; Found: C, 45.57; H, 3.87; N, 5.00; Cu, 11.45. IR (KBr) cm-1: 1640vs,br νas(COO-); 1371vs νs(COO-); 1605mν(C?N)Mefpy; 654mδ(py)Mefpy; 428mχ(py)Mefpy; 1041mν(CO)methanol. UV-VIS: 645 nm.

Refinement

All H atoms of C–H (aromatic, methyl and methylene) and hydroxyl O–H bonds were placed in calculated positions (0.95, 0.98, 0.99 and 0.84 Å, respectively); isotropic displacement parameters were fixed (Uiso(H) = xUiso(C/O) (x = 1.2 for aromatic and methylene; and 1.5 for methyl and hydroxyl) of C or O atoms to which they were attached) using a riding model.

Figures

Fig. 1.
Perspective view of the title compound, with the atom numbering scheme and thermal ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound with C–H···O hydrogen bonds, Cl···Cl contacts and π-π stacking interactions. Symmetry codes: (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + ...
Fig. 3.
The C–H···O hydrogen bonds and CH/π interactions in crystal structure of the title compound. Symmetry codes: (i) -x + 3/2, -y + 3/2, -z + 1; (v) -x + 3/2, y + 1/2, -z + 1/2].

Crystal data

[Cu(C2H2ClO2)2(C8H7NO)2(CH4O)]F000 = 2248
Mr = 548.86Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 4021 reflections
a = 19.860 (3) Åθ = 2.3–25.0º
b = 15.576 (3) ŵ = 1.23 mm1
c = 15.017 (3) ÅT = 173 (2) K
β = 97.917 (3)ºBlock, green
V = 4600.9 (15) Å30.26 × 0.20 × 0.16 mm
Z = 8

Data collection

Nonius KappaCCD area-detector diffractometer4021 independent reflections
Radiation source: Enraf–Nonius FR5903093 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.076
Detector resolution: 9 pixels mm-1θmax = 25.0º
T = 173(2) Kθmin = 2.3º
ω and [var phi] scansh = −21→23
Absorption correction: multi-scan(SORTAV; Blessing, 1995)k = −16→18
Tmin = 0.776, Tmax = 0.891l = −16→17
16690 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0452P)2 + 8.8488P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4021 reflectionsΔρmax = 1.08 e Å3
300 parametersΔρmin = −0.53 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.68144 (2)0.73110 (3)0.32031 (2)0.02193 (13)
Cl10.47011 (5)0.61664 (6)0.48363 (6)0.0391 (2)
Cl20.91758 (6)0.91134 (8)0.26724 (8)0.0570 (3)
O10.70672 (12)0.67987 (16)0.18435 (15)0.0311 (6)
H1O0.74750.69530.19610.042*
O40.60027 (12)0.65827 (15)0.31521 (14)0.0245 (5)
O50.58725 (13)0.72145 (16)0.44549 (15)0.0329 (6)
O80.75801 (11)0.81089 (15)0.34186 (15)0.0255 (5)
O90.82188 (13)0.76344 (17)0.24003 (16)0.0346 (6)
O170.85280 (12)0.44366 (15)0.51707 (14)0.0260 (5)
O270.51950 (12)1.02340 (16)0.12018 (15)0.0308 (6)
N110.73795 (14)0.63899 (18)0.39349 (17)0.0239 (6)
N210.62599 (14)0.82756 (18)0.25534 (17)0.0234 (6)
C10.7054 (2)0.5932 (3)0.1550 (3)0.0401 (10)
H1A0.74100.56050.19210.060*
H1B0.71310.59080.09200.060*
H1C0.66090.56840.16090.060*
C20.51644 (18)0.6003 (2)0.3912 (2)0.0281 (8)
H2A0.53760.54260.39650.034*
H2B0.48440.60170.33460.034*
C30.57154 (17)0.6670 (2)0.3861 (2)0.0241 (7)
C60.86409 (19)0.8740 (2)0.3437 (2)0.0336 (9)
H6A0.89240.84620.39510.040*
H6B0.84110.92370.36740.040*
C70.81103 (17)0.8109 (2)0.3028 (2)0.0261 (8)
C120.72171 (17)0.5554 (2)0.3792 (2)0.0249 (7)
H120.68190.54070.33950.030*
C130.76207 (17)0.4910 (2)0.4212 (2)0.0232 (7)
C140.76156 (18)0.3984 (2)0.4209 (2)0.0275 (8)
H140.72930.36230.38660.033*
C150.81551 (18)0.3731 (2)0.4786 (2)0.0266 (8)
C160.84283 (19)0.2884 (2)0.5111 (2)0.0315 (8)
H16A0.84110.28360.57590.047*
H16B0.89000.28300.49960.047*
H16C0.81540.24260.47940.047*
C180.81968 (17)0.5148 (2)0.4800 (2)0.0244 (7)
C190.83756 (17)0.5989 (2)0.4963 (2)0.0243 (7)
H190.87710.61470.53600.029*
C200.79452 (17)0.6590 (2)0.4514 (2)0.0238 (7)
H200.80510.71800.46170.029*
C220.63954 (17)0.9106 (2)0.2739 (2)0.0246 (7)
H220.67570.92500.31970.030*
C230.60218 (17)0.9759 (2)0.2279 (2)0.0226 (7)
C240.60092 (18)1.0681 (2)0.2304 (2)0.0263 (8)
H240.62971.10420.27010.032*
C250.55152 (18)1.0935 (2)0.1662 (2)0.0275 (8)
C260.5241 (2)1.1790 (3)0.1366 (3)0.0374 (9)
H26A0.54401.22290.17910.056*
H26B0.47461.17900.13470.056*
H26C0.53561.19170.07660.056*
C280.55083 (18)0.9522 (2)0.1590 (2)0.0266 (8)
C290.53615 (18)0.8676 (2)0.1379 (2)0.0301 (8)
H290.50110.85150.09130.036*
C300.57544 (18)0.8075 (2)0.1887 (2)0.0282 (8)
H300.56650.74850.17610.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0215 (2)0.0189 (2)0.0251 (2)−0.00278 (18)0.00206 (15)0.00040 (16)
Cl10.0352 (5)0.0397 (6)0.0453 (6)−0.0002 (4)0.0153 (4)0.0061 (4)
Cl20.0403 (6)0.0577 (8)0.0748 (8)−0.0195 (6)0.0142 (5)0.0131 (6)
O10.0346 (15)0.0283 (15)0.0303 (13)−0.0045 (12)0.0037 (10)−0.0056 (10)
O40.0244 (13)0.0213 (13)0.0276 (13)−0.0045 (10)0.0031 (9)−0.0003 (9)
O50.0376 (15)0.0274 (15)0.0333 (14)−0.0084 (12)0.0033 (11)−0.0046 (11)
O80.0220 (13)0.0193 (13)0.0346 (13)−0.0003 (10)0.0023 (10)0.0006 (10)
O90.0335 (15)0.0354 (15)0.0353 (14)−0.0043 (12)0.0065 (11)−0.0019 (11)
O170.0273 (13)0.0228 (13)0.0265 (12)−0.0005 (11)−0.0017 (9)0.0015 (10)
O270.0319 (14)0.0308 (15)0.0277 (13)0.0050 (12)−0.0028 (10)0.0045 (10)
N110.0246 (16)0.0272 (17)0.0199 (14)−0.0026 (13)0.0030 (11)−0.0017 (11)
N210.0215 (15)0.0263 (17)0.0224 (14)−0.0026 (12)0.0036 (11)0.0001 (11)
C10.051 (3)0.030 (2)0.040 (2)−0.0026 (19)0.0080 (18)−0.0042 (17)
C20.028 (2)0.0220 (19)0.0347 (19)−0.0048 (16)0.0075 (15)−0.0013 (14)
C30.0235 (19)0.0196 (19)0.0277 (19)0.0012 (14)−0.0017 (14)0.0036 (14)
C60.026 (2)0.029 (2)0.046 (2)−0.0072 (16)0.0048 (16)0.0026 (16)
C70.0230 (19)0.0218 (19)0.032 (2)0.0004 (15)−0.0009 (15)0.0089 (15)
C120.0256 (19)0.024 (2)0.0245 (17)−0.0046 (15)0.0002 (13)−0.0020 (14)
C130.0274 (19)0.0249 (19)0.0171 (16)−0.0026 (15)0.0020 (13)−0.0008 (13)
C140.031 (2)0.026 (2)0.0242 (18)−0.0025 (16)−0.0014 (14)−0.0038 (14)
C150.035 (2)0.0222 (19)0.0237 (18)0.0001 (16)0.0072 (14)−0.0005 (13)
C160.034 (2)0.027 (2)0.034 (2)0.0018 (16)0.0025 (15)0.0015 (15)
C180.0265 (19)0.027 (2)0.0197 (17)0.0022 (16)0.0033 (13)0.0028 (13)
C190.0238 (19)0.025 (2)0.0236 (17)−0.0045 (15)0.0007 (13)−0.0014 (13)
C200.0247 (19)0.0228 (19)0.0239 (17)−0.0055 (15)0.0030 (13)−0.0022 (13)
C220.0252 (19)0.025 (2)0.0235 (17)−0.0052 (15)0.0030 (13)−0.0008 (13)
C230.0227 (18)0.0249 (19)0.0196 (17)−0.0006 (15)0.0012 (12)0.0015 (13)
C240.0263 (19)0.024 (2)0.0282 (18)−0.0022 (15)0.0024 (14)0.0000 (14)
C250.026 (2)0.027 (2)0.0302 (19)−0.0004 (16)0.0081 (15)0.0017 (14)
C260.038 (2)0.035 (2)0.038 (2)0.0091 (19)0.0036 (17)0.0105 (16)
C280.0270 (19)0.031 (2)0.0220 (18)0.0021 (16)0.0052 (14)0.0024 (14)
C290.026 (2)0.034 (2)0.0280 (19)−0.0029 (16)−0.0042 (14)−0.0020 (15)
C300.028 (2)0.027 (2)0.0298 (19)−0.0072 (16)0.0023 (14)−0.0049 (15)

Geometric parameters (Å, °)

Cu1—O81.956 (2)C14—C151.341 (5)
Cu1—O41.964 (2)C14—H140.9500
Cu1—N212.031 (3)C15—O171.404 (4)
Cu1—N112.046 (3)C15—C161.484 (5)
Cu1—O12.311 (2)C16—H16A0.9800
Cu1—O52.833 (2)C16—H16B0.9800
Cl1—C21.786 (3)C16—H16C0.9800
Cl2—C61.767 (4)O17—C181.367 (4)
Cl2—Cl2i3.384 (2)C18—C191.371 (5)
O1—C11.419 (4)C19—C201.380 (5)
O1—H1O0.84C19—H190.9500
C1—H1A0.9800C20—H200.9500
C1—H1B0.9800N21—C221.343 (4)
C1—H1C0.9800N21—C301.353 (4)
O4—C31.282 (4)C22—C231.385 (5)
O5—C31.239 (4)C22—H220.9500
C2—C31.519 (5)C23—C281.399 (5)
C2—H2A0.9900C23—C241.438 (5)
C2—H2B0.9900C24—C251.337 (5)
O8—C71.273 (4)C24—H240.9500
O9—C71.240 (4)C25—O271.398 (4)
C6—C71.509 (5)C25—C261.483 (5)
C6—H6A0.9900C26—H26A0.9800
C6—H6B0.9900C26—H26B0.9800
N11—C121.351 (4)C26—H26C0.9800
N11—C201.359 (4)O27—C281.362 (4)
C12—C131.382 (5)C28—C291.378 (5)
C12—H120.9500C29—C301.379 (5)
C13—C181.396 (5)C29—H290.9500
C13—C141.442 (5)C30—H300.9500
O8—Cu1—O4171.36 (9)C15—C14—C13106.7 (3)
O8—Cu1—N2188.12 (10)C15—C14—H14126.7
O4—Cu1—N2191.19 (10)C13—C14—H14126.7
O8—Cu1—N1190.01 (10)C14—C15—O17111.4 (3)
O4—Cu1—N1190.14 (10)C14—C15—C16134.2 (3)
N21—Cu1—N11176.10 (10)O17—C15—C16114.3 (3)
O8—Cu1—O196.14 (9)C15—C16—H16A109.5
O4—Cu1—O192.47 (9)C15—C16—H16B109.5
N21—Cu1—O190.02 (10)H16A—C16—H16B109.5
N11—Cu1—O193.59 (10)C15—C16—H16C109.5
O8—Cu1—O5119.56 (8)H16A—C16—H16C109.5
O4—Cu1—O551.81 (8)H16B—C16—H16C109.5
N21—Cu1—O589.66 (9)C18—O17—C15105.6 (3)
N11—Cu1—O588.28 (9)O17—C18—C19127.1 (3)
O1—Cu1—O5144.26 (8)O17—C18—C13110.4 (3)
C1—O1—Cu1127.3 (2)C19—C18—C13122.4 (3)
C1—O1—H1O108.3C18—C19—C20115.7 (3)
Cu1—O1—H1O92.0C18—C19—H19122.1
O1—C1—H1A109.8C20—C19—H19122.1
O1—C1—H1B109.7N11—C20—C19124.0 (3)
H1A—C1—H1B109.5N11—C20—H20118.0
O1—C1—H1C109.0C19—C20—H20118.0
H1A—C1—H1C109.5C22—N21—C30118.9 (3)
H1B—C1—H1C109.5C22—N21—Cu1122.2 (2)
C3—O4—Cu1111.3 (2)C30—N21—Cu1118.8 (2)
C3—O5—Cu171.48 (19)N21—C22—C23121.7 (3)
C3—C2—Cl1113.2 (2)N21—C22—H22119.1
C3—C2—H2A108.9C23—C22—H22119.1
Cl1—C2—H2A108.9C22—C23—C28117.5 (3)
C3—C2—H2B108.9C22—C23—C24136.9 (3)
Cl1—C2—H2B108.9C28—C23—C24105.6 (3)
H2A—C2—H2B107.8C25—C24—C23106.9 (3)
O5—C3—O4125.0 (3)C25—C24—H24126.6
O5—C3—C2122.9 (3)C23—C24—H24126.6
O4—C3—C2112.1 (3)C24—C25—O27111.4 (3)
C7—O8—Cu1126.7 (2)C24—C25—C26133.1 (3)
C7—C6—Cl2113.5 (3)O27—C25—C26115.5 (3)
C7—C6—H6A108.8C25—C26—H26A109.5
Cl2—C6—H6A108.8C25—C26—H26B109.5
C7—C6—H6B109.0H26A—C26—H26B109.5
Cl2—C6—H6B108.9C25—C26—H26C109.5
H6A—C6—H6B107.7H26A—C26—H26C109.5
O9—C7—O8126.2 (3)H26B—C26—H26C109.5
O9—C7—C6120.9 (3)C28—O27—C25105.9 (3)
O8—C7—C6112.8 (3)O27—C28—C29127.7 (3)
C12—N11—C20118.8 (3)O27—C28—C23110.2 (3)
C12—N11—Cu1119.3 (2)C29—C28—C23122.1 (3)
C20—N11—Cu1121.8 (2)C28—C29—C30115.9 (3)
N11—C12—C13121.1 (3)C28—C29—H29122.0
N11—C12—H12119.5C30—C29—H29122.0
C13—C12—H12119.5N21—C30—C29123.9 (3)
C12—C13—C18118.0 (3)N21—C30—H30118.1
C12—C13—C14136.2 (3)C29—C30—H30118.1
C18—C13—C14105.8 (3)
O8—Cu1—O1—C1136.2 (3)C13—C14—C15—C16177.9 (4)
O4—Cu1—O1—C1−44.5 (3)C14—C15—O17—C18−0.4 (4)
N21—Cu1—O1—C1−135.7 (3)C16—C15—O17—C18−179.2 (3)
N11—Cu1—O1—C145.8 (3)C15—O17—C18—C19−179.3 (3)
O5—Cu1—O1—C1−46.2 (3)C15—O17—C18—C131.3 (3)
N21—Cu1—O4—C3−92.4 (2)C12—C13—C18—O17178.7 (3)
N11—Cu1—O4—C383.9 (2)C14—C13—C18—O17−1.7 (4)
O1—Cu1—O4—C3177.5 (2)C12—C13—C18—C19−0.7 (5)
O5—Cu1—O4—C3−3.75 (19)C14—C13—C18—C19178.9 (3)
O8—Cu1—O5—C3−176.77 (19)O17—C18—C19—C20−178.7 (3)
O4—Cu1—O5—C33.81 (19)C13—C18—C19—C200.6 (5)
N21—Cu1—O5—C395.6 (2)C12—N11—C20—C190.9 (5)
N11—Cu1—O5—C3−87.7 (2)Cu1—N11—C20—C19−174.1 (2)
O1—Cu1—O5—C36.0 (3)C18—C19—C20—N11−0.7 (5)
Cu1—O5—C3—O4−5.6 (3)O8—Cu1—N21—C22−26.3 (3)
Cu1—O5—C3—C2172.3 (3)O4—Cu1—N21—C22145.1 (3)
Cu1—O4—C3—O58.2 (4)O1—Cu1—N21—C22−122.5 (3)
Cu1—O4—C3—C2−169.9 (2)O5—Cu1—N21—C2293.3 (3)
Cl1—C2—C3—O57.2 (4)O8—Cu1—N21—C30151.0 (2)
Cl1—C2—C3—O4−174.6 (2)O4—Cu1—N21—C30−37.6 (2)
N21—Cu1—O8—C7−106.4 (3)O1—Cu1—N21—C3054.8 (2)
N11—Cu1—O8—C777.0 (3)O5—Cu1—N21—C30−89.4 (2)
O1—Cu1—O8—C7−16.6 (3)C30—N21—C22—C231.5 (5)
O5—Cu1—O8—C7165.0 (2)Cu1—N21—C22—C23178.7 (2)
Cl2i—Cl2—C6—C7−117.3 (3)N21—C22—C23—C28−2.0 (5)
Cu1—O8—C7—O94.8 (5)N21—C22—C23—C24178.3 (4)
Cu1—O8—C7—C6−172.6 (2)C22—C23—C24—C25179.6 (4)
Cl2—C6—C7—O929.4 (4)C28—C23—C24—C250.0 (4)
Cl2—C6—C7—O8−153.1 (3)C23—C24—C25—O27−0.2 (4)
O8—Cu1—N11—C12−156.7 (2)C23—C24—C25—C26178.3 (4)
O4—Cu1—N11—C1231.9 (2)C24—C25—O27—C280.4 (4)
O1—Cu1—N11—C12−60.6 (2)C26—C25—O27—C28−178.4 (3)
O5—Cu1—N11—C1283.7 (2)C25—O27—C28—C29178.6 (3)
O8—Cu1—N11—C2018.3 (3)C25—O27—C28—C23−0.4 (3)
O4—Cu1—N11—C20−153.1 (2)C22—C23—C28—O27−179.4 (3)
O1—Cu1—N11—C20114.4 (2)C24—C23—C28—O270.3 (4)
O5—Cu1—N11—C20−101.3 (2)C22—C23—C28—C291.5 (5)
C20—N11—C12—C13−1.0 (5)C24—C23—C28—C29−178.8 (3)
Cu1—N11—C12—C13174.2 (2)O27—C28—C29—C30−179.3 (3)
N11—C12—C13—C180.9 (5)C23—C28—C29—C30−0.4 (5)
N11—C12—C13—C14−178.6 (3)C22—N21—C30—C29−0.3 (5)
C12—C13—C14—C15−179.1 (4)Cu1—N21—C30—C29−177.6 (3)
C18—C13—C14—C151.4 (4)C28—C29—C30—N21−0.3 (5)
C13—C14—C15—O17−0.6 (4)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O90.841.862.664 (3)159
C12—H12···O40.952.442.944 (4)113
C20—H20···O80.952.402.915 (4)114
C22—H22···O80.952.412.886 (4)111
C30—H30···O40.952.533.000 (4)111
C6—H6A···O5ii0.992.603.510 (4)154
C16—H16C···O1iii0.982.633.413 (4)137
C14—H14···O9iii0.952.553.450 (4)159
C20—H20···O5ii0.952.573.221 (4)126
C29—H29···O5iv0.952.693.451 (4)138
C19—H19···O5ii0.952.653.235 (4)120
C16—H16A···O9v0.982.653.610 (4)167
C24—H24···O9vi0.952.673.408 (4)135
C1—H1B···C14vii0.982.873.834 (4)168

Symmetry codes: (ii) −x+3/2, −y+3/2, −z+1; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+1, y, −z+1/2; (v) x, −y+1, z+1/2; (vi) −x+3/2, y+1/2, −z+1/2; (vii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2220).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). Polyhedron, 24, 1510–1516.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Borel, M.-M., Boniak, L., Busnot, F. & Leclaire, A. (1978). Rev. Chim. Miner.15, 397–405.
  • Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl.34, 2311–2327.
  • Eloy, F. & Deryckere, A. (1971). J. Heterocycl. Chem.8, 57–60.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ivaniková, R., Boča, R., Dlháň, Ľ., Fuess, H., Mašlejová, A., Mrázová, V., Svoboda, I. & Titiš, J. (2006). Polyhedron, 25, 3261–3268.
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Mikloš, D., Jašková, J., Segľa, P., Miklovič, J., Mrázová, V., Kaliňaková, B., Hudecová, D., Sillanpää, R., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 201–217. Bratislava: Slovak Technical University Press.
  • Miklovič, J., Krutošíková, A. & Baran, P. (2004). Acta Cryst. C60, m227–m230. [PubMed]
  • Moncol, J., Segľa, P., Jašková, J., Fischer, A. & Melník, M. (2007). Acta Cryst. E63, m698–m700.
  • New, J. S., Christopher, W. L., Yevich, J. P., Butler, R., Schlemmer, R. F. Jr, van der Maelen, C. P. & Cipolline, J. A. (1989). J. Med. Chem.32, 1147–1156. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Segľa, P., Jašková, J., Mikloš, D., Kaliňaková, B., Hudecová, D., Miklovič, J., Mrázová, V., Švorec, J., Lis, T. & Melník, M. (2005). Advances in Coordination, Bioinorganic and Inorganic Chemistry, Vol. 7, edited by M. Melník, J. Šima & M. Tatarko, pp. 323–340. Bratislava: Slovak Technical University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2002). Eur. J. Inorg. Chem. pp. 3148–3155.
  • Titiš, J., Boča, R., Dlháň, Ľ., Ďurčeková, T., Fuess, H., Ivaniková, R., Mrázová, V., Papánková, B. & Svoboda, I. (2007). Polyhedron, 26, 1523–1530.
  • Vrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007a). Acta Cryst. E63, m2112–m2113.
  • Vrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J. & Kožíšek, J. (2007b). Acta Cryst. E63, m2427–m2428.
  • Wang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun.8, 596–599.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography