PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m732.
Published online 2008 April 30. doi:  10.1107/S1600536808006466
PMCID: PMC2961077

Bis(2-amino­pyrimidine-κN 1)dibromidozinc(II)

Abstract

The title compound, [ZnBr2(C4H5N3)2], is a mononuclear complex in which the ZnII ions have distorted tetra­hedral coordination geometry. The ZnII ion binds to two N atoms from two different 2-amino­pyrimidine ligands and two bromide ions. N—H(...)N hydrogen bonds link the mol­ecules to form a one-dimensional supra­molecular structure. The supra­molecular chains are parallel to each other and N—H(...)Br hydrogen bonds link them into a two-dimensional network in the ac plane. Additionally, there are strong π–π inter­actions [centroid–centroid distance = 3.403 (3) Å].

Related literature

For related literature, see: Bourne et al. (2001 [triangle]); Etter et al. (1990 [triangle]); Lin & Zeng (2007 [triangle]); Pon et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m732-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C4H5N3)2]
  • M r = 415.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m732-efi1.jpg
  • a = 6.7912 (11) Å
  • b = 7.2197 (12) Å
  • c = 15.512 (3) Å
  • α = 81.060 (3)°
  • β = 83.823 (3)°
  • γ = 63.132 (2)°
  • V = 669.61 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 7.79 mm−1
  • T = 292 (2) K
  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.305, T max = 0.408 (expected range = 0.251–0.336)
  • 5351 measured reflections
  • 2342 independent reflections
  • 1878 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.02
  • 2342 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006466/rn2036sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006466/rn2036Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Bureau of Science and Technology of Wuhan City, Hubei Province, People’s Republic of China (grant No. 20055003059-28).

supplementary crystallographic information

Comment

Recently, the design of molecular architecture with pyrimidine and bipyrimidine has aroused interest in the fields of coordination, bioinorganic and magnetochemistry (Pon et al., 1997).

In our laboratory, analogous crystals have been obtained from the interaction of zinc(lI) chloride with 2-aminopyrimidine (Lin & Zeng, 2007). As an extension of this work, we report the crystal structure of the title compound, (I), bis(2-aminopyrimidine)-zinc(II) bromide. Compound I contains discrete L2CuBr2 molecules (L: 2-aminopyrimidine). The ZnII ion is coordinated by two N atoms from two different 2-aminopyrimidine ligands and two Br anions, giving distorted tetrahedral coordination geometry [mean Zn—N = 2.058 (8) Å and mean Zn—Br = 2.356 (4) Å]. The bond lengths and angles of Zn—N and Zn—Br (Table 1) are within the expected ranges (Bourne et al., 2001).

In the crystal structure, N—H···N hydrogen bonds and N—H···Br hydrogen bonds (Table 2) help to establish the crystal packing. The 2-aminopyrimidine molecules form N—H···N hydrogen bonds, resulting in eight membered ring graph-set motif, [R22(8)] (Etter et al., 1990). The N—H···N hydrogen bonds bind the neighboring 2-aminopyrimidine molecules to form a zigzag one-dimensional ribbon structure. The supramolecular ribbons are parallel to each other and N—H···Br hydrogen bonds link them into a two-dimensional network. The close distance, 3.403 (3) Å, between the centroids of two rings (N4,N5,C5,C6,C7,C8 and its symmetry equivalent at -x,1 - y,1 - z) indicates that there are also strong π -π interactions.

Experimental

10 ml e thanol solution containing ZnBr2 (0.5 mmol) and 2-aminopyrimidine (1.0 mmol) was stirred at room temperature for 12 h and then filtered. The filtrate was kept at room temperature in the dark for two weeks to give white crystals of (I). The crystals were isolated and washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl2. Analysis calculated for C8N6H10 Zn Br2: C 23.13, N 20.23, H 2.43%; found: C 23.19, N 20.46,H 2.61%.

Refinement

The H atoms bonded to C atoms were placed in calculated positions, and were allowed to ride on their parent C atoms, with a distance of 0.93 Å for aromatic H atoms and Uiso(H) = 1.2 times its parent atom. The H atoms of –NH2 were found from residue peaks in the difference map. The H atoms of the NH2 group were placed in geometrically calculated positions and the N—H distance restrained to 0.86 (2) Å. The isotropic displacement parameters were set equal to 1.5Ueq(parent N atom) for amino H atoms.

Figures

Fig. 1.
The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packing of (I) viewed along the a axis. The O–H···N and Br—H···N hydrogen bonding interactions are shown as dashed lines.

Crystal data

[ZnBr2(C4H5N3)2]Z = 2
Mr = 415.41F000 = 400
Triclinic, P1Dx = 2.060 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.7912 (11) ÅCell parameters from 2800 reflections
b = 7.2197 (12) Åθ = 2.1–28.7º
c = 15.512 (3) ŵ = 7.79 mm1
α = 81.060 (3)ºT = 292 (2) K
β = 83.823 (3)ºBlock, white
γ = 63.132 (2)º0.20 × 0.16 × 0.14 mm
V = 669.61 (19) Å3

Data collection

Siemens SMART CCD area-detector diffractometer2342 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.074
T = 292(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→7
Tmin = 0.305, Tmax = 0.409k = −8→8
5351 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110  w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2342 reflectionsΔρmax = 0.80 e Å3
156 parametersΔρmin = −0.68 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.19184 (13)0.75744 (9)0.20800 (4)0.0660 (2)
Br20.57558 (9)0.19239 (9)0.31136 (4)0.0528 (2)
C10.2693 (11)0.1954 (8)0.0989 (3)0.0472 (14)
C2−0.0153 (14)0.2437 (10)0.0194 (4)0.0631 (18)
H2−0.06640.2230−0.02980.076*
C3−0.1718 (12)0.3635 (10)0.0799 (4)0.0613 (17)
H3−0.32310.41710.07370.074*
C4−0.0852 (11)0.3955 (9)0.1486 (4)0.0527 (15)
H4−0.18150.47670.19010.063*
C5−0.0098 (7)0.2696 (8)0.4074 (3)0.0322 (10)
C6−0.2637 (9)0.4775 (9)0.5028 (3)0.0470 (14)
H6−0.34390.49250.55590.056*
C7−0.2909 (8)0.6530 (9)0.4488 (4)0.0481 (14)
H7−0.39320.78480.46220.058*
C8−0.1607 (8)0.6272 (8)0.3737 (3)0.0452 (13)
H8−0.17380.74490.33570.054*
N10.1338 (8)0.3141 (7)0.1588 (2)0.0412 (10)
N20.1963 (11)0.1600 (8)0.0279 (3)0.0594 (14)
N30.4858 (9)0.1121 (9)0.1065 (3)0.0674 (16)
H3A0.51010.11350.15240.101*
H3B0.55060.15970.06070.101*
N4−0.0134 (6)0.4360 (6)0.3530 (2)0.0356 (9)
N5−0.1293 (7)0.2848 (7)0.4844 (3)0.0414 (10)
N60.1223 (8)0.0761 (7)0.3887 (3)0.0477 (11)
H6A0.16460.08020.34210.071*
H6B0.04490.00260.39500.071*
Zn10.22458 (9)0.41974 (8)0.25651 (3)0.0358 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1151 (6)0.0446 (4)0.0495 (4)−0.0468 (4)0.0003 (3)−0.0032 (3)
Br20.0431 (4)0.0522 (4)0.0541 (4)−0.0125 (3)0.0026 (3)−0.0125 (3)
C10.082 (5)0.042 (3)0.033 (3)−0.042 (3)0.011 (3)−0.011 (2)
C20.115 (6)0.062 (4)0.037 (3)−0.061 (4)−0.013 (3)0.002 (3)
C30.086 (5)0.067 (4)0.051 (4)−0.051 (4)−0.017 (3)0.005 (3)
C40.081 (5)0.050 (3)0.040 (3)−0.040 (3)−0.002 (3)−0.005 (3)
C50.027 (2)0.041 (3)0.027 (2)−0.014 (2)0.0021 (18)−0.007 (2)
C60.042 (3)0.068 (4)0.038 (3)−0.028 (3)0.009 (2)−0.024 (3)
C70.032 (3)0.050 (3)0.058 (3)−0.010 (3)0.009 (2)−0.024 (3)
C80.041 (3)0.037 (3)0.045 (3)−0.006 (2)0.001 (2)−0.007 (2)
N10.063 (3)0.049 (3)0.027 (2)−0.037 (2)0.0078 (19)−0.0118 (19)
N20.109 (5)0.058 (3)0.036 (3)−0.056 (3)0.004 (3)−0.015 (2)
N30.081 (4)0.090 (4)0.049 (3)−0.049 (3)0.023 (3)−0.041 (3)
N40.036 (2)0.038 (2)0.030 (2)−0.0123 (18)0.0025 (16)−0.0095 (18)
N50.040 (2)0.056 (3)0.030 (2)−0.023 (2)0.0061 (18)−0.011 (2)
N60.056 (3)0.044 (3)0.042 (3)−0.022 (2)0.014 (2)−0.011 (2)
Zn10.0478 (4)0.0332 (3)0.0277 (3)−0.0190 (3)0.0045 (2)−0.0081 (2)

Geometric parameters (Å, °)

Br1—Zn12.3528 (9)C5—N51.360 (6)
Br2—Zn12.3593 (8)C6—N51.330 (7)
C1—N31.324 (8)C6—C71.354 (8)
C1—N11.340 (7)C6—H60.9300
C1—N21.358 (7)C7—C81.368 (8)
C2—N21.295 (9)C7—H70.9300
C2—C31.401 (10)C8—N41.353 (6)
C2—H20.9300C8—H80.9300
C3—C41.368 (8)N1—Zn12.060 (4)
C3—H30.9300N3—H3A0.7500
C4—N11.347 (8)N3—H3B0.9006
C4—H40.9300N4—Zn12.056 (4)
C5—N61.333 (6)N6—H6A0.7500
C5—N41.348 (6)N6—H6B0.8901
N3—C1—N1119.5 (5)N4—C8—H8119.0
N3—C1—N2117.2 (5)C7—C8—H8119.0
N1—C1—N2123.2 (6)C1—N1—C4117.6 (5)
N2—C2—C3124.1 (6)C1—N1—Zn1126.4 (4)
N2—C2—H2118.0C4—N1—Zn1115.4 (3)
C3—C2—H2118.0C2—N2—C1117.5 (6)
C4—C3—C2114.9 (7)C1—N3—H3A109.5
C4—C3—H3122.5C1—N3—H3B111.2
C2—C3—H3122.5H3A—N3—H3B120.6
N1—C4—C3122.7 (6)C5—N4—C8116.8 (4)
N1—C4—H4118.6C5—N4—Zn1124.1 (3)
C3—C4—H4118.6C8—N4—Zn1118.1 (4)
N6—C5—N4120.2 (4)C6—N5—C5116.2 (5)
N6—C5—N5116.0 (5)C5—N6—H6A109.5
N4—C5—N5123.8 (4)C5—N6—H6B109.0
N5—C6—C7123.9 (5)H6A—N6—H6B108.2
N5—C6—H6118.0N4—Zn1—N1101.97 (16)
C7—C6—H6118.0N4—Zn1—Br1109.63 (11)
C6—C7—C8116.9 (5)N1—Zn1—Br1109.06 (12)
C6—C7—H7121.6N4—Zn1—Br2108.97 (11)
C8—C7—H7121.6N1—Zn1—Br2114.70 (13)
N4—C8—C7122.1 (5)Br1—Zn1—Br2112.00 (3)
N2—C2—C3—C42.8 (9)C7—C8—N4—C53.9 (7)
C2—C3—C4—N1−1.5 (9)C7—C8—N4—Zn1−164.7 (4)
N5—C6—C7—C8−4.1 (8)C7—C6—N5—C52.0 (7)
C6—C7—C8—N41.0 (8)N6—C5—N5—C6−179.1 (4)
N3—C1—N1—C4−179.8 (5)N4—C5—N5—C63.5 (7)
N2—C1—N1—C42.2 (8)C5—N4—Zn1—N179.9 (4)
N3—C1—N1—Zn19.2 (7)C8—N4—Zn1—N1−112.3 (4)
N2—C1—N1—Zn1−168.8 (4)C5—N4—Zn1—Br1−164.6 (3)
C3—C4—N1—C1−0.8 (8)C8—N4—Zn1—Br13.2 (4)
C3—C4—N1—Zn1171.2 (5)C5—N4—Zn1—Br2−41.7 (4)
C3—C2—N2—C1−1.5 (9)C8—N4—Zn1—Br2126.0 (3)
N3—C1—N2—C2−179.1 (5)C1—N1—Zn1—N4−149.6 (4)
N1—C1—N2—C2−1.1 (8)C4—N1—Zn1—N439.2 (4)
N6—C5—N4—C8176.3 (4)C1—N1—Zn1—Br194.5 (4)
N5—C5—N4—C8−6.3 (7)C4—N1—Zn1—Br1−76.7 (4)
N6—C5—N4—Zn1−15.8 (6)C1—N1—Zn1—Br2−32.1 (5)
N5—C5—N4—Zn1161.6 (3)C4—N1—Zn1—Br2156.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···Br2i0.932.873.651 (5)142
N6—H6B···N5ii0.892.472.996 (6)119
N3—H3A···Br20.752.743.480 (5)170

Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2036).

References

  • Bourne, S. A., Kilkenny, M. & Nassimbeni, L. R. (2001). Dalton Trans. pp. 1176–1179.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Lin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.
  • Pon, G., Willett, R. D., Prince, B. A. & Robinson, W. T. (1997). Inorg. Chim. Acta, 255, 325–334.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography