PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o948.
Published online 2008 April 30. doi:  10.1107/S160053680801235X
PMCID: PMC2961072

N′-(3,5-Dichloro-2-hydroxy­benzyl­idene)-3-methoxy­benzohydrazide methanol solvate

Abstract

In the title compound, C15H12Cl2N2O3·CH3OH, the Schiff base mol­ecule is nearly planar, with a dihedral angle of 4.5 (2)° between the two benzene rings. An intra­molecular O—H(...)N hydrogen bond is observed. The methanol solvent mol­ecule is linked to the Schiff base mol­ecule through inter­molecular N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds, see: Herrick et al. (2008 [triangle]); Suresh et al. (2007 [triangle]); Liu et al. (2007 [triangle]). For the background on biological activities, see: Bhandari et al. (2008 [triangle]); Sinha et al. (2008 [triangle]); Sun et al. (2008 [triangle]). For related structures, see: Wang et al. (2008 [triangle]); Tang (2008a [triangle],b [triangle]); Yang & Zheng (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o948-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O3·CH4O
  • M r = 371.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o948-efi1.jpg
  • a = 7.742 (3) Å
  • b = 9.070 (3) Å
  • c = 12.296 (4) Å
  • α = 92.422 (5)°
  • β = 98.948 (5)°
  • γ = 96.954 (5)°
  • V = 845.0 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 298 (2) K
  • 0.27 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.898, T max = 0.923
  • 6888 measured reflections
  • 3452 independent reflections
  • 2253 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.131
  • S = 1.04
  • 3452 reflections
  • 224 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801235X/ci2593sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801235X/ci2593Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007; Liu et al., 2007). These compounds show interesting biological activities, especially antimicrobial activities (Bhandari et al., 2008; Sinha et al., 2008; Sun et al., 2008). Recently, the crystal structures of a few Schiff base compounds obtained from the derivatives of salicylaldehyde with benzohydrazide have been reported (Wang et al., 2008; Tang, 2008a,b; Yang & Zheng, 2007). We report here the crystal structure of a new Schiff base compound, derived from 3,5-dichlorosalicylaldehyde and 3-methoxybenzohydrazide.

The asymmetric unit consists of a Schiff base molecule and a methanol molecule of crystallization (Fig. 1). The Schiff base molecule is nearly planar, with a maximum deviation of 0.133 (1) Å for atom Cl1. The dihedral angle between the two benzene rings is 4.5 (2)°. An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule. The methanol molecule of crystallization is linked to the Schiff base molecule through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig.2).

Experimental

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg) and 3-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in methanol (20 ml). The mixture was stirred at room temperature to give a clear yellow solution. Yellow block-shaped crystals were formed after a week.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N2—H2 distance restrained to 0.90 (1) Å, and with Uiso(H) set to 0.08 Å2. All other H atoms were constrained to idealized geometries, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C). A rotating group model was used for the methyl and hydroxyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The molecular packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal data

C15H12Cl2N2O3·CH4OZ = 2
Mr = 371.21F000 = 384
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.742 (3) ÅCell parameters from 1304 reflections
b = 9.070 (3) Åθ = 2.4–24.5º
c = 12.296 (4) ŵ = 0.41 mm1
α = 92.422 (5)ºT = 298 (2) K
β = 98.948 (5)ºBlock, yellow
γ = 96.954 (5)º0.27 × 0.23 × 0.20 mm
V = 845.0 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3452 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 298(2) Kθmax = 26.5º
ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.898, Tmax = 0.923k = −11→11
6888 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131  w = 1/[σ2(Fo2) + (0.0565P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3452 reflectionsΔρmax = 0.27 e Å3
224 parametersΔρmin = −0.24 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.29231 (9)−0.03639 (9)0.10217 (6)0.0659 (3)
Cl2−0.37695 (9)−0.28076 (8)0.09465 (6)0.0636 (3)
O10.2383 (2)0.14041 (19)0.29003 (15)0.0532 (5)
H10.22190.18520.34610.080*
O20.3328 (2)0.3979 (2)0.51936 (17)0.0729 (6)
O3−0.0405 (3)0.5968 (2)0.88407 (15)0.0659 (6)
O40.3034 (2)0.6965 (2)0.42945 (18)0.0677 (6)
H40.36790.63280.44580.102*
N10.0576 (3)0.2173 (2)0.43529 (16)0.0432 (5)
N20.0515 (3)0.3093 (2)0.52560 (17)0.0455 (5)
C1−0.0641 (3)0.0367 (3)0.2932 (2)0.0408 (6)
C20.0927 (3)0.0466 (3)0.2486 (2)0.0406 (6)
C30.0983 (3)−0.0464 (3)0.1565 (2)0.0432 (6)
C4−0.0443 (3)−0.1470 (3)0.1091 (2)0.0474 (6)
H4A−0.0375−0.20830.04770.057*
C5−0.1966 (3)−0.1549 (3)0.1541 (2)0.0448 (6)
C6−0.2080 (3)−0.0639 (3)0.2446 (2)0.0460 (6)
H6−0.3127−0.06990.27330.055*
C7−0.0786 (3)0.1315 (3)0.3889 (2)0.0483 (7)
H7−0.18480.12950.41560.058*
C80.2044 (3)0.3995 (3)0.5653 (2)0.0438 (6)
C90.2074 (3)0.4983 (3)0.66579 (19)0.0419 (6)
C100.0683 (3)0.4953 (3)0.7255 (2)0.0422 (6)
H10−0.03510.43070.70290.051*
C110.0864 (3)0.5898 (3)0.8188 (2)0.0469 (6)
C120.2406 (4)0.6849 (3)0.8525 (2)0.0557 (7)
H120.25230.74720.91590.067*
C130.3750 (4)0.6877 (3)0.7933 (2)0.0596 (8)
H130.47780.75300.81610.072*
C140.3607 (3)0.5946 (3)0.6997 (2)0.0505 (7)
H140.45350.59660.65980.061*
C15−0.2031 (4)0.5035 (4)0.8545 (3)0.0710 (9)
H15A−0.25750.52410.78210.107*
H15B−0.27960.52180.90660.107*
H15C−0.18240.40120.85470.107*
C160.3991 (5)0.8175 (4)0.3948 (4)0.1132 (15)
H16A0.32650.89560.38220.170*
H16B0.43880.78990.32740.170*
H16C0.49920.85150.45030.170*
H2−0.052 (2)0.307 (3)0.551 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0460 (4)0.0854 (6)0.0652 (5)−0.0006 (4)0.0214 (3)−0.0269 (4)
Cl20.0477 (4)0.0620 (5)0.0732 (5)−0.0078 (3)0.0037 (3)−0.0223 (4)
O10.0428 (10)0.0569 (11)0.0563 (12)−0.0079 (9)0.0142 (8)−0.0200 (9)
O20.0505 (12)0.0888 (15)0.0777 (15)−0.0132 (11)0.0315 (11)−0.0309 (12)
O30.0605 (12)0.0825 (14)0.0529 (12)−0.0024 (11)0.0200 (10)−0.0229 (10)
O40.0470 (12)0.0815 (15)0.0784 (15)0.0085 (10)0.0202 (11)0.0104 (12)
N10.0435 (12)0.0456 (12)0.0397 (12)0.0026 (10)0.0100 (9)−0.0096 (10)
N20.0402 (12)0.0526 (13)0.0425 (12)0.0005 (10)0.0118 (10)−0.0158 (10)
C10.0434 (14)0.0383 (13)0.0404 (14)0.0037 (11)0.0092 (11)−0.0040 (11)
C20.0353 (13)0.0410 (13)0.0438 (15)0.0014 (11)0.0064 (11)−0.0044 (11)
C30.0396 (14)0.0501 (15)0.0410 (14)0.0070 (11)0.0121 (11)−0.0071 (12)
C40.0487 (15)0.0480 (15)0.0437 (15)0.0070 (12)0.0053 (12)−0.0125 (12)
C50.0385 (14)0.0426 (14)0.0492 (16)−0.0004 (11)0.0013 (11)−0.0053 (12)
C60.0401 (14)0.0469 (15)0.0502 (16)0.0013 (11)0.0104 (12)−0.0080 (12)
C70.0466 (15)0.0508 (15)0.0485 (16)0.0016 (13)0.0175 (13)−0.0084 (13)
C80.0391 (14)0.0456 (15)0.0461 (15)0.0019 (12)0.0098 (12)−0.0052 (12)
C90.0404 (14)0.0446 (14)0.0388 (14)0.0048 (11)0.0030 (11)−0.0046 (11)
C100.0357 (13)0.0455 (14)0.0418 (14)−0.0018 (11)0.0031 (11)−0.0072 (11)
C110.0487 (15)0.0491 (15)0.0419 (15)0.0061 (12)0.0063 (12)−0.0059 (12)
C120.0621 (18)0.0551 (17)0.0444 (16)−0.0004 (14)0.0028 (14)−0.0153 (13)
C130.0510 (17)0.0602 (18)0.0581 (19)−0.0117 (14)−0.0029 (14)−0.0109 (15)
C140.0427 (15)0.0538 (16)0.0524 (17)−0.0013 (12)0.0076 (12)−0.0038 (13)
C150.0575 (19)0.083 (2)0.075 (2)0.0027 (17)0.0269 (16)−0.0150 (18)
C160.090 (3)0.103 (3)0.148 (4)−0.001 (2)0.025 (3)0.045 (3)

Geometric parameters (Å, °)

Cl1—C31.730 (2)C5—C61.377 (3)
Cl2—C51.736 (2)C6—H60.93
O1—C21.344 (3)C7—H70.93
O1—H10.82C8—C91.490 (3)
O2—C81.219 (3)C9—C141.382 (3)
O3—C111.367 (3)C9—C101.393 (3)
O3—C151.417 (3)C10—C111.381 (3)
O4—C161.369 (4)C10—H100.93
O4—H40.82C11—C121.381 (3)
N1—C71.273 (3)C12—C131.358 (4)
N1—N21.371 (3)C12—H120.93
N2—C81.364 (3)C13—C141.381 (4)
N2—H20.899 (10)C13—H130.93
C1—C61.390 (3)C14—H140.93
C1—C21.402 (3)C15—H15A0.96
C1—C71.455 (3)C15—H15B0.96
C2—C31.393 (3)C15—H15C0.96
C3—C41.379 (3)C16—H16A0.96
C4—C51.374 (3)C16—H16B0.96
C4—H4A0.93C16—H16C0.96
C2—O1—H1109.5C14—C9—C10120.3 (2)
C11—O3—C15118.7 (2)C14—C9—C8116.0 (2)
C16—O4—H4109.5C10—C9—C8123.7 (2)
C7—N1—N2120.9 (2)C11—C10—C9119.0 (2)
C8—N2—N1115.25 (19)C11—C10—H10120.5
C8—N2—H2127.0 (19)C9—C10—H10120.5
N1—N2—H2117.7 (19)O3—C11—C10124.3 (2)
C6—C1—C2119.6 (2)O3—C11—C12115.3 (2)
C6—C1—C7119.6 (2)C10—C11—C12120.4 (2)
C2—C1—C7120.8 (2)C13—C12—C11120.3 (2)
O1—C2—C3118.0 (2)C13—C12—H12119.9
O1—C2—C1123.7 (2)C11—C12—H12119.9
C3—C2—C1118.2 (2)C12—C13—C14120.7 (2)
C4—C3—C2122.0 (2)C12—C13—H13119.7
C4—C3—Cl1119.52 (18)C14—C13—H13119.7
C2—C3—Cl1118.44 (18)C13—C14—C9119.5 (2)
C5—C4—C3118.8 (2)C13—C14—H14120.3
C5—C4—H4A120.6C9—C14—H14120.3
C3—C4—H4A120.6O3—C15—H15A109.5
C4—C5—C6120.9 (2)O3—C15—H15B109.5
C4—C5—Cl2119.08 (19)H15A—C15—H15B109.5
C6—C5—Cl2119.97 (19)O3—C15—H15C109.5
C5—C6—C1120.4 (2)H15A—C15—H15C109.5
C5—C6—H6119.8H15B—C15—H15C109.5
C1—C6—H6119.8O4—C16—H16A109.5
N1—C7—C1118.4 (2)O4—C16—H16B109.5
N1—C7—H7120.8H16A—C16—H16B109.5
C1—C7—H7120.8O4—C16—H16C109.5
O2—C8—N2120.4 (2)H16A—C16—H16C109.5
O2—C8—C9122.0 (2)H16B—C16—H16C109.5
N2—C8—C9117.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.899 (10)1.997 (12)2.881 (3)167 (3)
O4—H4···O20.822.352.989 (3)135
O4—H4···O2ii0.822.343.023 (3)141
O1—H1···N10.821.842.557 (3)145

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2593).

References

  • Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem.16, 1822–1831. [PubMed]
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem.693, 619–624.
  • Liu, H.-B., Wang, M., Wang, Y. & Gu, Q. (2007). Synth. Commun.37, 3815–3826.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem.43, 160–165. [PubMed]
  • Sun, X.-H., Tao, Y., Liu, Y.-F., Jia, Y.-Q., Chen, B. & Yang, J.-W. (2008). Chin. J. Org. Chem.28, 155–159.
  • Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett.36, 1332–1333.
  • Tang, C.-B. (2008a). Acta Cryst. E64, o767. [PMC free article] [PubMed]
  • Tang, C.-B. (2008b). Acta Cryst. E64, o768. [PMC free article] [PubMed]
  • Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668. [PMC free article] [PubMed]
  • Yang, M.-H. & Zheng, Y.-F. (2007). Acta Cryst. E63, o4732.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography