PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m687.
Published online 2008 April 18. doi:  10.1107/S1600536808010404
PMCID: PMC2961070

{4-Bromo-2-[2-(isopropyl­amino)ethyl­imino­meth­yl]phenolato}thio­cyanato­copper(II)

Abstract

In the title mononuclear Schiff base copper(II) complex, [Cu(C12H16BrN2O)(NCS)], the CuII ion is coordinated by two N atoms and one O atom from a Schiff base ligand, and by one N atom from a thio­cyanate anion, giving a square-planar geometry. There are long-range inter­actions between the Cu atom and S [3.151 (5) Å] and Br [3.929 (5) Å] atoms above and below the square plane.

Related literature

For related literature, see: Ma et al. (2005 [triangle]); Ma, Gu et al. (2006 [triangle]); Ma, Lv et al. (2006 [triangle]); Ma, Wu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m687-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H16BrN2O)(NCS)]
  • M r = 405.80
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m687-efi1.jpg
  • a = 6.161 (2) Å
  • b = 20.223 (3) Å
  • c = 12.930 (3) Å
  • β = 95.332 (5)°
  • V = 1604.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.98 mm−1
  • T = 298 (2) K
  • 0.40 × 0.38 × 0.37 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.299, T max = 0.321 (expected range = 0.214–0.229)
  • 11914 measured reflections
  • 3474 independent reflections
  • 2126 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.153
  • S = 1.01
  • 3474 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010404/om2226sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010404/om2226Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Scientific Research Foundation of Henan University of Science and Technology (Project No. 05–072).

supplementary crystallographic information

Comment

Recently, we have reported some metal complexes derived from the Schiff base ligands (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, Wu et al., 2006; Ma et al., 2005). As part of a further investigation of the structures of such complexes, the title mononuclear copper(II) complex, is reported in this paper.

In the complex the Cu atom is coordinated by two nitrogen atoms and one oxygen atom from a Schiff base ligand, and by one nitrogen atom from a thiocyanate anion, giving a square planar geometry (Fig. 1). There exist long range interactions between the Cu and S (3.151 (5) Å; symmetry code: 1 + x, y, z) and Br (3.929 (5) Å; symmetry code: 1 - x, - y, 1 - z) atoms above and below the square plane. All the bond lengths and angles (Table 1) related to the Cu atom in the complex are within normal ranges. The four coordinating atoms around the Cu centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.047 (4) Å; the Cu atom lies 0.089 (2) Å above this plane. The C8—C9—N2—C10 torsion angle is 2.0 (3)°.

Experimental

N-Isopropylethane-1,2-diamine (0.5 mmol, 51.0 mg) and 5-bromosalicylaldehyde (0.5 mmol, 100.5 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of copper(II) acetate (0.5 mmol, 99.6 mg) and a methanol solution (10 ml) of ammonium thiocyanate (0.5 mmol, 38.0 mg). After keeping the resulting solution in air for a few days, blue block-shaped crystals were formed.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93-0.97 Å, N—H = 0.91 Å, and with Uĩso~(H) = 1.2U~eq~(C,N) and 1.5U~eq~(methyl C).

Figures

Fig. 1.
The molecular structure at the 30% probability level ellipsoids.

Crystal data

[Cu(C12H16BrN2O)(NCS)]F000 = 812
Mr = 405.80Dx = 1.680 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1880 reflections
a = 6.161 (2) Åθ = 2.5–24.3º
b = 20.223 (3) ŵ = 3.98 mm1
c = 12.930 (3) ÅT = 298 (2) K
β = 95.332 (5)ºBlock, blue
V = 1604.0 (7) Å30.40 × 0.38 × 0.37 mm
Z = 4

Data collection

Bruker SMART 1000 diffractometer3474 independent reflections
Radiation source: fine-focus sealed tube2126 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.076
T = 298(2) Kθmax = 27.0º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.299, Tmax = 0.321k = −25→25
11914 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.153  w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3474 reflectionsΔρmax = 0.81 e Å3
183 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.26493 (10)0.20760 (3)0.47898 (5)0.0450 (2)
N10.5364 (7)0.1721 (2)0.5425 (3)0.0408 (10)
N20.3292 (7)0.2854 (2)0.5819 (4)0.0534 (12)
H2A0.26640.27290.63970.064*
N3−0.0164 (8)0.2425 (3)0.4201 (4)0.0616 (14)
O10.2003 (6)0.1286 (2)0.4022 (3)0.0551 (10)
S1−0.4273 (2)0.25260 (9)0.31058 (11)0.0566 (4)
Br10.80195 (10)−0.08910 (3)0.28530 (5)0.0677 (3)
C10.6219 (9)−0.0194 (3)0.3274 (4)0.0475 (13)
C20.6939 (9)0.0269 (3)0.3994 (4)0.0466 (13)
H20.83640.02450.42990.056*
C30.5578 (8)0.0781 (2)0.4285 (4)0.0382 (12)
C40.3387 (8)0.0829 (3)0.3822 (4)0.0418 (12)
C50.2699 (9)0.0321 (3)0.3099 (4)0.0532 (15)
H50.12700.03260.27950.064*
C60.4065 (10)−0.0175 (3)0.2836 (5)0.0552 (15)
H60.3554−0.04990.23650.066*
C70.6414 (9)0.1221 (3)0.5099 (4)0.0436 (12)
H70.78080.11400.54130.052*
C80.6326 (9)0.2117 (3)0.6316 (4)0.0544 (15)
H8A0.79020.20770.63760.065*
H8B0.58010.19570.69550.065*
C90.5675 (9)0.2829 (3)0.6140 (4)0.0536 (15)
H9A0.60060.30810.67730.064*
H9B0.64780.30190.56020.064*
C100.2371 (15)0.3525 (4)0.5575 (6)0.092 (2)
H100.08180.34470.53760.111*
C110.242 (2)0.3952 (5)0.6475 (9)0.150 (4)
H11A0.21220.36970.70720.225*
H11B0.13280.42900.63540.225*
H11C0.38280.41540.65960.225*
C120.319 (2)0.3811 (5)0.4651 (7)0.152 (5)
H12A0.22460.41650.43960.228*
H12B0.32210.34770.41250.228*
H12C0.46330.39790.48240.228*
C13−0.1851 (9)0.2472 (3)0.3741 (4)0.0457 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0348 (4)0.0592 (5)0.0396 (4)0.0019 (3)−0.0042 (3)−0.0043 (3)
N10.038 (2)0.048 (3)0.035 (2)−0.006 (2)−0.0057 (18)0.002 (2)
N20.051 (3)0.066 (3)0.044 (3)0.010 (2)0.007 (2)−0.005 (2)
N30.042 (3)0.079 (4)0.061 (3)0.011 (3)−0.008 (2)−0.015 (3)
O10.036 (2)0.066 (3)0.061 (3)0.0002 (19)−0.0087 (17)−0.011 (2)
S10.0407 (8)0.0800 (11)0.0466 (8)−0.0024 (8)−0.0086 (6)0.0161 (8)
Br10.0639 (5)0.0571 (4)0.0838 (5)−0.0015 (3)0.0157 (4)−0.0128 (3)
C10.043 (3)0.045 (3)0.055 (3)−0.004 (3)0.007 (3)0.000 (3)
C20.043 (3)0.046 (3)0.050 (3)−0.002 (3)−0.001 (2)0.007 (3)
C30.039 (3)0.038 (3)0.037 (3)−0.004 (2)0.000 (2)0.005 (2)
C40.037 (3)0.046 (3)0.041 (3)−0.006 (2)−0.001 (2)0.004 (2)
C50.040 (3)0.062 (4)0.054 (4)−0.009 (3)−0.011 (3)−0.007 (3)
C60.058 (4)0.052 (4)0.054 (4)−0.013 (3)0.001 (3)−0.007 (3)
C70.038 (3)0.048 (3)0.044 (3)0.001 (3)−0.003 (2)0.015 (3)
C80.049 (3)0.063 (4)0.048 (3)−0.006 (3)−0.013 (3)−0.009 (3)
C90.056 (4)0.057 (4)0.049 (3)−0.002 (3)0.006 (3)−0.014 (3)
C100.121 (7)0.082 (5)0.073 (5)0.032 (5)0.002 (5)−0.017 (4)
C110.248 (14)0.083 (7)0.124 (9)0.029 (7)0.039 (9)−0.018 (6)
C120.280 (15)0.099 (7)0.084 (6)0.089 (9)0.055 (8)0.028 (6)
C130.046 (3)0.049 (3)0.043 (3)0.002 (3)0.007 (3)0.002 (3)

Geometric parameters (Å, °)

Cu1—O11.903 (4)C4—C51.426 (7)
Cu1—N11.932 (4)C5—C61.372 (8)
Cu1—N31.959 (5)C5—H50.9300
Cu1—N22.075 (5)C6—H60.9300
N1—C71.292 (6)C7—H70.9300
N1—C81.481 (6)C8—C91.507 (8)
N2—C91.489 (7)C8—H8A0.9700
N2—C101.493 (9)C8—H8B0.9700
N2—H2A0.9100C9—H9A0.9700
N3—C131.152 (6)C9—H9B0.9700
O1—C41.300 (6)C10—C111.448 (11)
S1—C131.639 (6)C10—C121.458 (12)
Br1—C11.905 (5)C10—H100.9800
C1—C21.364 (7)C11—H11A0.9600
C1—C61.394 (8)C11—H11B0.9600
C2—C31.406 (7)C11—H11C0.9600
C2—H20.9300C12—H12A0.9600
C3—C41.428 (7)C12—H12B0.9600
C3—C71.436 (7)C12—H12C0.9600
O1—Cu1—N192.32 (17)N1—C7—C3124.6 (5)
O1—Cu1—N387.98 (19)N1—C7—H7117.7
N1—Cu1—N3177.5 (2)C3—C7—H7117.7
O1—Cu1—N2171.59 (18)N1—C8—C9108.5 (5)
N1—Cu1—N284.45 (18)N1—C8—H8A110.0
N3—Cu1—N294.91 (19)C9—C8—H8A110.0
C7—N1—C8120.1 (4)N1—C8—H8B110.0
C7—N1—Cu1126.3 (3)C9—C8—H8B110.0
C8—N1—Cu1113.5 (3)H8A—C8—H8B108.4
C9—N2—C10115.9 (5)N2—C9—C8108.5 (5)
C9—N2—Cu1106.1 (3)N2—C9—H9A110.0
C10—N2—Cu1120.5 (4)C8—C9—H9A110.0
C9—N2—H2A104.2N2—C9—H9B110.0
C10—N2—H2A104.2C8—C9—H9B110.0
Cu1—N2—H2A104.2H9A—C9—H9B108.4
C13—N3—Cu1162.4 (5)C11—C10—C12116.1 (9)
C4—O1—Cu1126.3 (3)C11—C10—N2113.2 (7)
C2—C1—C6119.7 (5)C12—C10—N2112.3 (6)
C2—C1—Br1122.8 (4)C11—C10—H10104.6
C6—C1—Br1117.5 (4)C12—C10—H10104.6
C1—C2—C3121.6 (5)N2—C10—H10104.6
C1—C2—H2119.2C10—C11—H11A109.5
C3—C2—H2119.2C10—C11—H11B109.5
C2—C3—C4120.1 (5)H11A—C11—H11B109.5
C2—C3—C7118.1 (5)C10—C11—H11C109.5
C4—C3—C7121.8 (5)H11A—C11—H11C109.5
O1—C4—C5118.8 (5)H11B—C11—H11C109.5
O1—C4—C3125.2 (5)C10—C12—H12A109.5
C5—C4—C3116.0 (5)C10—C12—H12B109.5
C6—C5—C4122.4 (5)H12A—C12—H12B109.5
C6—C5—H5118.8C10—C12—H12C109.5
C4—C5—H5118.8H12A—C12—H12C109.5
C5—C6—C1120.2 (5)H12B—C12—H12C109.5
C5—C6—H6119.9N3—C13—S1178.7 (6)
C1—C6—H6119.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2226).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.
  • Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.
  • Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.
  • Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct 221, 53–54.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography