PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m523–m524.
Published online 2008 March 5. doi:  10.1107/S1600536808004091
PMCID: PMC2961066

2,4,6-Triamino-1,3,5-triazine-1,3-diium aqua­penta­fluoridoaluminate

Abstract

The title compound, (C3H8N6)[AlF5(H2O)], was obtained by solvothermal synthesis from the reaction of aluminium hydroxide, 1,3,5-triazine-2,4,6-triamine (melamine), aqueous HF and water at 323 K for 48 h. The structure consists of [AlF5(H2O)]2− octa­hedra and diprotonated melaminium cations. Cohesion is ensured by a three-dimensional network of hydrogen bonds.

Related literature

For related literature, see: Adil, Ben Ali et al. (2006 [triangle]); Adil, Leblanc & Maisonneuve (2006 [triangle]); Farrugia (1999 [triangle]); Goreshnik et al. (2002 [triangle], 2003 [triangle]); Rother et al. (1996 [triangle], 1998 [triangle]); Schroder et al. (1993 [triangle]); Tang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m523-scheme1.jpg

Experimental

Crystal data

  • (C3H8N6)[AlF5(H2O)]
  • M r = 268.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m523-efi4.jpg
  • a = 7.571 (2) Å
  • b = 8.823 (2) Å
  • c = 13.484 (5) Å
  • β = 105.53 (3)°
  • V = 867.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 298 (2) K
  • 0.20 × 0.13 × 0.08 mm

Data collection

  • Siemens AED2 diffractometer
  • Absorption correction: none
  • 2500 measured reflections
  • 2500 independent reflections
  • 1441 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: 4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.133
  • S = 1.04
  • 2500 reflections
  • 152 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: STADI4 (Stoe & Cie, 1998 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Version 1.2; Allen et al., 2004 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004091/dn2317sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004091/dn2317Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Numerous hybrid fluoroaluminates with linear or branched amines are reported; during the last five years more than 20 compounds were evidenced (Goreshnik et al., 2002; Adil, Ben Ali et al., 2006; Adil, Leblanc & Maisonneuve, 2006). At the opposite, only few hybrid fluoroaluminates with cyclic amines are known (Schroder et al., 1993; Rother et al., 1996; Rother et al., 1998; Tang et al., 2001; Goreshnik et al., 2003). 1,3,5-triazine-2,4,6-triamine (melamine) with three primary amines, three tertiary amines and a conjugated planar configuration was selected. (C3H8N6).[AlF5(H2O)] is synthesized and constitutes the first melamine templated fluoroaluminate.

The structure is built up from isolated [AlF5(H2O)]2- anions and diprotonated (C3H8N6)2+ cations (Fig. 1). A distortion of the aluminium coordination octahedron results from the presence of the water molecule: Al—F distances range from 1.758 (2) to 1.829 (2) Å and Al—O distance is 1.929 (3) Å. Melaminium cations are planar and two tertiary amines are protonated. C, N, H atomic positions are related by a pseudo two fold symmetry axis along the N1—C2—N5 direction. Hydrogen bonded octahedra form infinite inorganic chains along b axis (Fig. 2); the O1W—H2W···F1 hydrogen bonds (2.51 Å) are short. Every melaminium cation is surrounded by five [AlF5(H2O)] octahedra (Fig. 3).

Experimental

The title compound was prepared under hydrothermal conditions at 323 K for 48 h using Teflon-lined autoclaves from a started mixture of Al(OH)3 (Sochal), 1,3,5-triazine-2,4,6-triamine named melamine (Janssen chimica), HF aqueous solution (40%, Prolabo) and deionized water in the molar ratio 1:0.5:8.5:55.5. The resulting crystalline product was washed with water and dried in air. Needle crystals suitable for single-crystal X-ray diffraction were selected using an optical microscope.

Refinement

The structure was solved by direct methods (SHELXS86) and refined with SHELXL97; these programs are included in WinGX package (Farrugia, 1999). Hydrogen atoms of amine cations were located applying geometrical constraints which imply equal distances and angles to the central atom (AFIX option). Hydrogen atoms of water molecules were found in difference Fourier maps and the O—H distances were constrained to be equal to 0.9 Å (DFIX option). H atoms were refined with an isotropic thermal parameters and non-hydrogen atoms were refined with anisotropic thermal factors. The maximum residual electron density peak is located at 0.46 Å from Al. Protonation takes place on the two over three tertiary amine groups.

Figures

Fig. 1.
View of the melaminium cation and [AlF5(H2O)]2- anion with the atom-labellin scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
(100) projection of (C3H8N6).[AlF5(H2O)] structure.
Fig. 3.
Network of hydrogen bonds between melaminium cations and [AlF5(H2O)] octahedra. [Symmetry codes: (iii) 1 - x, y - 1/2, 1/2 - z; (iv) 1 - x, 1/2 + y, 1/2 - z; (v) 1 - x, -y, -z; (vi) 1 + x, 1/2 - y, z - 1/2]

Crystal data

(C3H8N6)[AlF5(H2O)]F000 = 544
Mr = 268.13Dx = 2.052 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 30 reflections
a = 7.571 (2) Åθ = 28–32º
b = 8.823 (2) ŵ = 0.31 mm1
c = 13.484 (5) ÅT = 298 (2) K
β = 105.53 (3)ºParallepiped, colourless
V = 867.8 (5) Å30.20 × 0.13 × 0.08 mm
Z = 4

Data collection

Siemens AED2 diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 2.8º
T = 298(2) Kh = −10→10
2θ/ω scansk = 0→12
Absorption correction: nonel = 0→18
2500 measured reflections3 standard reflections
2500 independent reflections every 120 min
1441 reflections with I > 2σ(I) intensity decay: 4%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133  w = 1/[σ2(Fo2) + (0.0437P)2 + 0.9389P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2500 reflectionsΔρmax = 0.46 e Å3
152 parametersΔρmin = −0.48 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Al10.2088 (1)0.2232 (1)0.30136 (7)0.0163 (2)
F10.0457 (3)0.0750 (2)0.30467 (16)0.0288 (5)
F20.2911 (3)0.1978 (2)0.44074 (14)0.0251 (4)
F30.3778 (3)0.0880 (2)0.28702 (17)0.0299 (5)
F40.3610 (3)0.3839 (2)0.31272 (16)0.0267 (5)
F50.1237 (3)0.2429 (2)0.16732 (14)0.0304 (5)
O1W0.0310 (3)0.3648 (3)0.32584 (18)0.0214 (5)
H1W−0.062 (5)0.324 (5)0.346 (4)0.062 (12)*
H2W−0.007 (7)0.444 (4)0.284 (3)0.062 (12)*
N10.7845 (4)0.2143 (3)−0.0619 (2)0.0202 (6)
N20.6746 (4)0.1144 (3)0.0739 (2)0.0195 (6)
H20.64990.03590.10560.023*
N30.6895 (4)0.3729 (3)0.0557 (2)0.0203 (6)
H30.67140.46330.07480.024*
N40.7594 (4)−0.0423 (3)−0.0409 (2)0.0232 (6)
H4A0.7996−0.0586−0.09380.028*
H4B0.7310−0.1173−0.00740.028*
N50.5822 (4)0.2735 (3)0.1861 (2)0.0271 (6)
H5A0.55430.19660.21810.033*
H5B0.56640.36380.20630.033*
N60.8013 (4)0.4736 (3)−0.0717 (2)0.0293 (7)
H6A0.84460.4652−0.12420.035*
H6B0.78500.5619−0.04860.035*
C10.7414 (4)0.0960 (3)−0.0113 (2)0.0179 (6)
C20.6481 (4)0.2534 (4)0.1076 (2)0.0191 (6)
C30.7602 (4)0.3525 (4)−0.0271 (2)0.0199 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Al10.0209 (5)0.0127 (4)0.0176 (4)−0.0002 (4)0.0090 (3)−0.0014 (4)
F10.0359 (13)0.0199 (10)0.0351 (11)−0.0115 (9)0.0175 (10)−0.0075 (9)
F20.0330 (11)0.0214 (10)0.0204 (9)0.0027 (8)0.0063 (8)0.0020 (8)
F30.0355 (13)0.0191 (10)0.0413 (12)0.0089 (9)0.0207 (10)0.0013 (9)
F40.0292 (12)0.0191 (9)0.0379 (11)−0.0069 (8)0.0197 (10)−0.0054 (9)
F50.0435 (13)0.0312 (11)0.0188 (9)0.0044 (10)0.0122 (9)−0.0009 (8)
O1W0.0240 (13)0.0179 (11)0.0251 (12)0.0055 (10)0.0113 (10)0.0066 (9)
N10.0263 (14)0.0171 (13)0.0202 (13)−0.0005 (11)0.0114 (11)0.0003 (11)
N20.0256 (15)0.0133 (12)0.0236 (13)−0.0001 (11)0.0134 (12)0.0016 (10)
N30.0260 (15)0.0125 (12)0.0240 (13)−0.0006 (10)0.0097 (12)−0.0026 (10)
N40.0354 (18)0.0180 (13)0.0204 (13)0.0015 (12)0.0152 (12)−0.0003 (11)
N50.0340 (17)0.0241 (14)0.0288 (15)−0.0016 (13)0.0181 (13)−0.0034 (13)
N60.0402 (19)0.0190 (14)0.0328 (16)−0.0052 (13)0.0166 (15)0.0020 (12)
C10.0200 (16)0.0181 (15)0.0166 (14)0.0008 (12)0.0065 (12)−0.0002 (12)
C20.0168 (15)0.0205 (15)0.0204 (14)−0.0022 (12)0.0056 (12)−0.0025 (12)
C30.0192 (16)0.0177 (15)0.0228 (15)−0.0005 (12)0.0056 (13)0.0006 (13)

Geometric parameters (Å, °)

Al1—F51.757 (2)N3—C21.347 (4)
Al1—F31.797 (2)N3—C31.374 (4)
Al1—F41.807 (2)N3—H30.8600
Al1—F11.807 (2)N4—C11.302 (4)
Al1—F21.829 (2)N4—H4A0.8600
Al1—O1W1.929 (2)N4—H4B0.8600
O1W—H1W0.90 (4)N5—C21.299 (4)
O1W—H2W0.90 (4)N5—H5A0.8600
N1—C11.334 (4)N5—H5B0.8600
N1—C31.337 (4)N6—C31.304 (4)
N2—C21.342 (4)N6—H6A0.8600
N2—C11.383 (4)N6—H6B0.8600
N2—H20.8600
F5—Al1—F391.76 (11)C2—N3—H3119.5
F5—Al1—F493.42 (11)C3—N3—H3119.5
F3—Al1—F494.23 (10)C1—N4—H4A120.0
F5—Al1—F191.84 (11)C1—N4—H4B120.0
F3—Al1—F191.90 (10)H4A—N4—H4B120.0
F4—Al1—F1171.80 (10)C2—N5—H5A120.0
F5—Al1—F2177.98 (12)C2—N5—H5B120.0
F3—Al1—F288.45 (11)H5A—N5—H5B120.0
F4—Al1—F288.57 (10)C3—N6—H6A120.0
F1—Al1—F286.15 (10)C3—N6—H6B120.0
F5—Al1—O1W91.80 (11)H6A—N6—H6B120.0
F3—Al1—O1W176.37 (11)N4—C1—N1121.1 (3)
F4—Al1—O1W86.32 (10)N4—C1—N2117.1 (3)
F1—Al1—O1W87.23 (10)N1—C1—N2121.8 (3)
F2—Al1—O1W87.97 (10)N5—C2—N2121.7 (3)
H1W—O1W—H2W111 (4)N5—C2—N3120.7 (3)
C1—N1—C3117.3 (3)N2—C2—N3117.6 (3)
C2—N2—C1120.6 (3)N6—C3—N1120.9 (3)
C2—N2—H2119.7N6—C3—N3117.4 (3)
C1—N2—H2119.7N1—C3—N3121.7 (3)
C2—N3—C3121.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.90 (4)1.94 (5)2.789 (3)156 (5)
O1W—H2W···F1ii0.90 (4)1.63 (4)2.515 (3)169 (5)
N2—H2···F4iii0.861.752.601 (3)169
N3—H3···F2iv0.862.112.871 (3)148
N3—H3···F3iv0.862.282.990 (3)140
N3—H3···F1iv0.862.522.953 (4)112
N4—H4A···F5v0.862.072.763 (3)138
N4—H4B···F2iii0.861.892.739 (3)168
N5—H5A···F30.862.062.837 (3)151
N5—H5B···F3iv0.862.022.804 (4)151
N5—H5B···F40.862.392.863 (3)115
N6—H6A···F1vi0.862.042.836 (4)154
N6—H6B···F2iv0.862.082.860 (4)150

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y, −z; (vi) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2317).

References

  • Adil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci.8, 698–703.
  • Adil, K., Leblanc, M. & Maisonneuve, V. (2006). J. Fluorine Chem.127, 1349–1354.
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Brandenburg, K. (2005). DIAMOND Release 3.1e. Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Goreshnik, E., Leblanc, M., Gaudin, E., Tautelle, F. & Maisonneuve, V. (2002). Solid State Sci.4, 1213–1219.
  • Goreshnik, E., Leblanc, M. & Maisonneuve, V. (2003). Acta Cryst. E59, m1059–m1061.
  • Rother, G., Worzala, H. & Bentrup, U. (1996). Z. Anorg. Allg. Chem.622, 1991–1996.
  • Rother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New Cryst. Struct.213, 119–120.
  • Schroder, L., Frenzen, G., Massa, W. & &Menz, D.-H. (1993). Z. Anorg. Allg. Chem.619, 1307–1314.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (1998). STADI4 (Version 1.07) and X-RED (Version 1.10). Stoe & Cie, Darmstadt, Germany.
  • Tang, L.-Q., Dadachov, M. S. & Zou, X.-D. (2001). Z. Kristallogr. New Cryst. Struct.216, 385–386.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography