PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o660.
Published online 2008 March 5. doi:  10.1107/S1600536807068456
PMCID: PMC2961065

9,10-Dimethyl-9,10-per­oxy-9,10-dihydro­anthracene

Abstract

The structure of the title compound, C16H14O2, contains one half-mol­ecule in the asymmetric unit and the mol­ecule is located on a mirror plane. The dihedral angle between the two benzene ring planes is 53.07 (6)°. The crystal structure involves intermolecular C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Burrows et al. (1999 [triangle]); Gable et al. (1996 [triangle]); Karolak-Wojciechowska et al. (1998 [triangle]); Larson (1970 [triangle]); Price (1946 [triangle]); Simpson et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o660-scheme1.jpg

Experimental

Crystal data

  • C16H14O2
  • M r = 238.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o660-efi1.jpg
  • a = 12.9873 (7) Å
  • b = 11.0810 (8) Å
  • c = 8.8368 (8) Å
  • V = 1271.72 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 (1) K
  • 0.40 × 0.35 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.958, T max = 0.976
  • 5690 measured reflections
  • 812 independent reflections
  • 585 reflections with F 2 > 2σ(F 2)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.107
  • S = 1.00
  • 699 reflections
  • 94 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807068456/ww2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068456/ww2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The Friedel–Crafts reaction of an alkyl halide with an aromatic hydrocarbon in the presence of aluminium chloride yields a substituted phenyl compound (Price, 1946). The reaction does not, however, stop at the stage of mono-substitution, an unpredictable compound was reported and determined by X-ray crystal structure analysis. The molecule of the title compound lie on a crystallographic mirror plane, which pass through atoms C1/O1/O2/C8/C9/C10 (Fig. 1). The geometrical parameters for (1) are similar to those of related 9,10-bridged anthracene derivatives (Simpson et al., 2004; Gable et al., 1996; Burrows et al., 1999). Atoms C1, C8 are almost coplanar with the benzene ring plane, and the deviating distance from the benzene ring are 0.0074 Å, -0.066 Å respectively. The dihedral angle between the plane of bridge atoms C1—O1—O2—C8 and the benzene ring plane is 63.45 (5)°. The benzene ring plane and its symmetry-related one form the dihedral angle of 53.07 (6)°, which is smaller than that of 9,10-bridged anthrancene systems, e.g. the corresponding dihedral angle in 11,12-bis(N,N-dimethyl-aminomethyl)-9,10-dihydro-9,10-ethanoanthrancene (Karolak-Wojciechowska et al., 1998) is 58.8 (2)°. The three six-membered rings of the bicycle core of (1) [C1—C2—C7—C8—C7i—C2i, C1—C2—C7—C8—O2—O1, C1—C2i—C7i—C8—O2—O1, symmetric code (i): 1 - x,y,z] are all forced into boat forms. Intermolecular weak interactions, C4—H4···O2ii [symmetric code (ii): 1/2 + x, 1/2 - y, -1/2 + z] and C6—H6···C4iii [symmctric code (iii): x, 1 - y, 1/2 + z], link the molecules into circles (Fig. 2). The bridged O2 atom attached to H4 atom of neighbouring benzene ring may result in the longer distance O2—C8, compared with the bond length C1—O1 (Table 1).

Experimental

Ethyl 2-bromo-2-methylpropionate (3.84 g, 20 mmol) was added to a 50 ml flask equipped with a reflux condenser and large magnetic stirrer. Anhydrous benzene (20 ml) was added to the flask, followed by fresh anhydrous AlCl3 (9.00 g, 67.5 mmol) in small portions. The solution was then slowly heated to the reflux temperature and at this time the exit of the reflux condenser was connected to a flowing-water HBr trap. The mixture was heated a total of 24 h without interruption. The reaction mixture was then cooled to 278k. and treated with 20 ml of 50/50 (by volume) conc. HCl/H2O to decompose the catalyst complex. The benzene layer was then separated, washed once with ice-cold H2O (12 ml) and twice with dilute aqueous sodium hydroxide. The organic phase was evaporate. After 6 days, a single-crystal suitable for X-ray analysis was obtained by recrystallization from ethanol.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and included in the refinement in riding model, with Uiso(H) = 1.2Ueq(carrier atom). In the absence of anomalous scatterers, no attempt was made to establish the absolute configuration of the title compound.

Figures

Fig. 1.
A view of (1). Displacement ellipsoids are drawn at 30% probability level and H atoms are shown as small circles of arbitary radii. Symmetry code (i): 1 - x, y, z
Fig. 2.
Packing arrangement for (1).

Crystal data

C16H14O2F000 = 504.00
Mr = 238.29Dx = 1.244 Mg m3
Orthorhombic, Cmc21Mo Kα radiation λ = 0.71069 Å
Hall symbol: C 2c -2Cell parameters from 2234 reflections
a = 12.9873 (7) Åθ = 2.4–27.3º
b = 11.0810 (8) ŵ = 0.08 mm1
c = 8.8368 (8) ÅT = 296 (1) K
V = 1271.72 (16) Å3Chunk, yellow
Z = 40.40 × 0.35 × 0.30 mm

Data collection

Rigaku R-AXIS RAPID diffractometer585 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.083
ω scansθmax = 27.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −16→16
Tmin = 0.958, Tmax = 0.976k = −14→12
5690 measured reflectionsl = −11→11
812 independent reflections

Refinement

Refinement on F2  w = 1/[0.0011Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.107Δρmax = 0.23 e Å3
S = 1.00Δρmin = −0.19 e Å3
699 reflectionsExtinction correction: (Larson, 1970)
94 parametersExtinction coefficient: 132 (34)
H-atom parameters constrained

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0σ(F2) is used only for calculating R-factor (gt).Data collection(812 indenpent reflections but 699 in refinement): The author of the software, Dr Lee Daniels (ldaniels@RigakuMSC.com) explain this problem (see following). The number of reflections used to refine the cell is taken from the diffractometer program, which uses all available reflections measured in different scans. Even though some reflections are used more than once, they measured at different psi angles and therefore represent independent observations for determination of the cell dimensions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.50000.1212 (2)0.7053 (3)0.0584 (7)
O20.50000.1937 (2)0.8453 (2)0.0547 (6)
C10.50000.1992 (2)0.5707 (4)0.0488 (9)
C20.59500 (13)0.27732 (18)0.5847 (2)0.0466 (6)
C30.67877 (17)0.2829 (2)0.4883 (3)0.0631 (8)
C40.76037 (19)0.3580 (2)0.5212 (3)0.0750 (10)
C50.75816 (19)0.4289 (3)0.6492 (3)0.0769 (9)
C60.67600 (18)0.4228 (2)0.7475 (3)0.0655 (8)
C70.59468 (14)0.3466 (2)0.7153 (2)0.0482 (5)
C80.50000.3253 (3)0.8122 (4)0.0502 (9)
C90.500000 (10)0.1104 (4)0.4404 (5)0.0734 (12)
C100.500000 (10)0.3808 (4)0.9660 (5)0.0786 (13)
H30.68000.23590.40110.076*
H40.81700.36080.45690.090*
H50.81250.48110.66930.092*
H60.67530.46960.83490.079*
H1010.56030.35551.02010.094*
H1020.50000.46710.95670.094*
H9010.56040.06060.44620.088*
H9020.50000.15380.34640.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0637 (13)0.0364 (11)0.0750 (17)0.00000.00000.0017 (13)
O20.0565 (13)0.0537 (13)0.0538 (15)0.00000.00000.0087 (11)
C10.0523 (17)0.0373 (15)0.057 (2)0.00000.0000−0.0067 (16)
C20.0403 (12)0.0385 (10)0.0608 (15)0.0054 (8)0.0021 (10)0.0028 (10)
C30.0594 (14)0.0578 (15)0.072 (2)0.0127 (11)0.0150 (14)0.0089 (14)
C40.0450 (13)0.081 (2)0.099 (2)0.0072 (13)0.0146 (15)0.032 (2)
C50.0440 (13)0.0784 (19)0.108 (2)−0.0167 (13)−0.0131 (16)0.037 (2)
C60.0569 (14)0.0614 (15)0.078 (2)−0.0120 (12)−0.0224 (14)0.0061 (14)
C70.0400 (10)0.0440 (10)0.0606 (14)0.0016 (8)−0.0061 (10)0.0019 (12)
C80.0492 (16)0.0492 (18)0.052 (2)0.00000.0000−0.0027 (15)
C90.089 (2)0.054 (2)0.077 (2)0.00000.0000−0.019 (2)
C100.089 (2)0.089 (2)0.058 (2)0.00000.0000−0.017 (2)

Geometric parameters (Å, °)

O1—O21.475 (3)C7—C81.517 (3)
O1—C11.470 (4)C8—C101.492 (6)
O2—C81.487 (4)C3—H30.930
C1—C21.512 (2)C4—H40.930
C1—C2i1.512 (2)C5—H50.930
C1—C91.514 (5)C6—H60.930
C2—C31.383 (3)C9—H9010.960
C2—C71.386 (3)C9—H901i0.960
C3—C41.378 (3)C9—H9020.960
C4—C51.377 (4)C10—H1010.960
C5—C61.378 (3)C10—H101i0.960
C6—C71.382 (3)C10—H1020.960
O2—O1—C1111.0 (2)C7—C8—C10116.76 (19)
O1—O2—C8111.6 (2)C7i—C8—C10116.75 (19)
O1—C1—C2105.68 (18)C2—C3—H3119.9
O1—C1—C2i105.68 (18)C4—C3—H3119.9
O1—C1—C9103.5 (2)C3—C4—H4119.9
C2—C1—C2i109.3 (2)C5—C4—H4119.9
C2—C1—C9115.72 (18)C4—C5—H5119.8
C2i—C1—C9115.72 (18)C6—C5—H5119.8
C1—C2—C3128.1 (2)C5—C6—H6120.3
C1—C2—C7112.5 (2)C7—C6—H6120.3
C3—C2—C7119.37 (19)C1—C9—H901109.5
C2—C3—C4120.1 (2)C1—C9—H901i109.5
C3—C4—C5120.1 (2)C1—C9—H902109.5
C4—C5—C6120.4 (2)H901—C9—H901i109.5
C5—C6—C7119.4 (2)H901—C9—H902109.5
C2—C7—C6120.5 (2)H901i—C9—H902109.5
C2—C7—C8112.7 (2)C8—C10—H101109.5
C6—C7—C8126.7 (2)C8—C10—H101i109.5
O2—C8—C7105.30 (19)C8—C10—H102109.5
O2—C8—C7i105.30 (19)H101—C10—H101i109.4
O2—C8—C10103.0 (3)H101—C10—H102109.5
C7—C8—C7i108.3 (2)H101i—C10—H102109.5
O2—O1—C1—C257.93 (16)C1—C2—C7—C6179.4 (2)
O2—O1—C1—C2i−57.93 (16)C1—C2—C7—C80.8 (2)
O1—O2—C8—C7−57.16 (18)C3—C2—C7—C61.5 (3)
O1—O2—C8—C7i57.16 (18)C3—C2—C7—C8−177.1 (2)
O1—C1—C2—C3118.2 (2)C7—C2—C3—C4−0.8 (3)
O1—C1—C2—C7−59.5 (2)C2—C3—C4—C5−0.9 (4)
O1—C1—C2i—C3i−118.2 (2)C3—C4—C5—C61.9 (4)
O1—C1—C2i—C7i59.5 (2)C4—C5—C6—C7−1.2 (4)
C2—C1—C2i—C3i128.5 (2)C5—C6—C7—C2−0.5 (3)
C2—C1—C2i—C7i−53.8 (3)C5—C6—C7—C8177.9 (2)
C2i—C1—C2—C3−128.5 (2)C2—C7—C8—O257.3 (2)
C2i—C1—C2—C753.8 (3)C2—C7—C8—C10170.8 (2)
C9—C1—C2—C34.3 (4)C2—C7—C8—C7i−55.0 (3)
C9—C1—C2—C7−173.3 (2)C6—C7—C8—O2−121.2 (2)
C9—C1—C2i—C3i−4.3 (4)C6—C7—C8—C10−7.7 (4)
C9—C1—C2i—C7i173.3 (2)C6—C7—C8—C7i126.5 (2)
C1—C2—C3—C4−178.4 (2)

Symmetry codes: (i) −x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.643.526 (2)159

Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2092).

References

  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Burrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236–239.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674–675.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Karolak-Wojciechowska, J., Trzezwinska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr.28, 905–911.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Price, C. C. (1946). The Alkylation of Aromatic Compounds by the Friedel–Crafts Method, Vol. 3, Organic Reactions III, edited by R. Adams, pp. 1–82. New York: John Wiley Press.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Version 3.60. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Simpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081–o1083.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography