PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o755.
Published online 2008 March 29. doi:  10.1107/S1600536808007708
PMCID: PMC2961062

3-(2,4-Dichloro­anilino)iso­benzo­furan-1(3H)-one1

Abstract

In the mol­ecule of the title compound, C14H9Cl2NO2, the essentially planar phthalide group is oriented at a dihedral angle of 63.23 (5)° with respect to the substituted aromatic ring. In the crystal structure, inter­molecular C—H(...)O and N—H(...)O hydrogen bonds link the mol­ecules, generating R 4 4(21) ring motifs to form a three-dimensional network.

Related literature

For general background, see: Aoki et al. (1973 [triangle], 1974 [triangle]); Tsi & Tan (1997 [triangle]); Roy & Sarkar (2005 [triangle]); Bellasio (1974 [triangle], 1975 [triangle]). For related structures, see: Büyükgüngör & Odabaşoğlu (2006 [triangle]); Odabaşoğlu & Büyükgüngör (2006 [triangle]). For ring motif details, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o755-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2NO2
  • M r = 294.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o755-efi5.jpg
  • a = 7.7647 (4) Å
  • b = 23.9293 (12) Å
  • c = 7.3261 (4) Å
  • β = 102.768 (5)°
  • V = 1327.56 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 296 K
  • 0.62 × 0.40 × 0.29 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.486, T max = 0.854
  • 7695 measured reflections
  • 2500 independent reflections
  • 1860 reflections with I > 2σ(I)
  • R int = 0.114

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.113
  • S = 1.03
  • 2500 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808007708/hk2436sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007708/hk2436Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Phthalides (isobenzofuranones) are five-membered lactones found in plants and they are known to show diverse biological activities, such as fungicidal, bactericidal, herbicidal, analgesic, pesticidal, hypotensive and vasorelaxant activities (Aoki et al., 1973, 1974; Tsi & Tan, 1997; Roy & Sarkar, 2005). In addition, phthalide derivatives are useful in the treatment of circulatory and heart-related diseases (Bellasio, 1974, 1975). As part of our ongoing research on 3-substituted phthalides (Büyükgüngör & Odabaşoğlu, 2006; Odabaşoǧlu & Büyükgüngör, 2006), the title compound, (I), has been synthesized and its crystal structure is reported here.

In the molecule of (I), (Fig. 1), rings A (C2-C7), B (C1/C2/C7/C8/O2) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 2.60 (5)°, A/C = 63.44 (4)° and B/C = 63.11 (5)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 63.23 (5)°. The geometry of (I) does not show any significant difference from the average geometry found for 3-(4-chloroanilino)isobenzofuran-1(3H)-one (Büyükgüngör & Odabaşoğlu, 2006).

In the crystal structure, intermolecular C-H···O and N-H···O hydrogen bonds (Table 1) link the molecules, generating R44(21) (Fig. 2) ring motifs (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 2,4-dichloroaniline as starting materials (yield; 80%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol-DMF (1:1) solution at room temperature.

Refinement

H atom (for NH) was located in difference synthesis and refined freely [N-H = 0.86 (3) Å and Uiso(H) = 0.069 (7) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of (I), showing the formation of R44(21) ring motif. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, 1/2 - y, z + 1/2; (ii) x - 1, y, z; (iii) x - 1, 1/2 - y, 1/2 - z]. H atoms not involved in hydrogen bondings ...

Crystal data

C14H9Cl2NO2F000 = 600
Mr = 294.12Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7695 reflections
a = 7.7647 (4) Åθ = 1.7–26.1º
b = 23.9293 (12) ŵ = 0.48 mm1
c = 7.3261 (4) ÅT = 296 K
β = 102.768 (5)ºPrism, colorless
V = 1327.56 (12) Å30.62 × 0.40 × 0.29 mm
Z = 4

Data collection

Stoe IPDS II diffractometer2500 independent reflections
Monochromator: plane graphite1860 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.114
T = 296 Kθmax = 25.7º
w–scan rotation methodθmin = 1.7º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −9→9
Tmin = 0.486, Tmax = 0.854k = −28→28
7695 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1182P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2500 reflectionsΔρmax = 0.39 e Å3
176 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.54932 (11)0.44014 (3)0.87525 (9)0.0799 (3)
Cl20.05955 (13)0.48298 (5)0.25003 (14)0.1281 (5)
O10.7384 (2)0.18458 (7)0.5396 (2)0.0666 (4)
O20.69942 (18)0.27650 (6)0.4919 (2)0.0552 (4)
H10.719 (3)0.3623 (11)0.752 (4)0.069 (7)*
N10.7106 (3)0.36695 (8)0.6346 (3)0.0570 (5)
C10.7958 (3)0.23169 (9)0.5653 (3)0.0502 (5)
C20.9681 (3)0.25091 (9)0.6711 (3)0.0468 (5)
C31.1115 (3)0.22004 (10)0.7623 (3)0.0574 (6)
H31.10720.18120.76690.069*
C41.2615 (3)0.24907 (13)0.8465 (3)0.0685 (7)
H41.36080.22960.90880.082*
C51.2657 (3)0.30675 (14)0.8391 (3)0.0722 (7)
H51.36850.32530.89710.087*
C61.1218 (3)0.33757 (11)0.7482 (3)0.0643 (6)
H61.12550.37640.74490.077*
C70.9719 (3)0.30836 (9)0.6624 (3)0.0497 (5)
C80.8012 (3)0.32888 (9)0.5450 (3)0.0506 (5)
H80.82410.34640.43180.061*
C90.5585 (3)0.39413 (9)0.5407 (3)0.0518 (5)
C100.4694 (3)0.43014 (9)0.6373 (3)0.0583 (6)
C110.3179 (3)0.45773 (11)0.5500 (4)0.0716 (7)
H110.26020.48140.61770.086*
C120.2532 (3)0.44977 (12)0.3615 (4)0.0730 (7)
C130.3382 (3)0.41567 (11)0.2614 (3)0.0685 (6)
H130.29420.41100.13360.082*
C140.4896 (3)0.38808 (10)0.3495 (3)0.0597 (6)
H140.54680.36490.27990.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1151 (6)0.0677 (4)0.0658 (4)0.0114 (4)0.0389 (4)−0.0076 (3)
Cl20.0912 (6)0.1702 (11)0.1280 (7)0.0701 (6)0.0349 (5)0.0507 (7)
O10.0662 (10)0.0565 (10)0.0751 (10)−0.0104 (8)0.0116 (8)−0.0096 (8)
O20.0437 (8)0.0569 (9)0.0613 (8)0.0026 (7)0.0036 (6)−0.0052 (7)
N10.0652 (12)0.0584 (11)0.0487 (10)0.0134 (9)0.0153 (9)−0.0014 (8)
C10.0471 (11)0.0545 (13)0.0509 (10)−0.0004 (10)0.0147 (9)−0.0061 (9)
C20.0419 (10)0.0541 (12)0.0470 (10)0.0009 (10)0.0153 (8)−0.0022 (8)
C30.0503 (12)0.0652 (14)0.0587 (12)0.0101 (11)0.0165 (10)0.0023 (10)
C40.0434 (12)0.098 (2)0.0626 (13)0.0103 (14)0.0089 (10)0.0015 (13)
C50.0426 (12)0.103 (2)0.0696 (14)−0.0124 (14)0.0087 (11)−0.0137 (14)
C60.0552 (13)0.0676 (15)0.0710 (14)−0.0150 (12)0.0160 (11)−0.0097 (11)
C70.0451 (11)0.0574 (13)0.0487 (10)−0.0020 (10)0.0152 (8)−0.0032 (9)
C80.0511 (12)0.0495 (12)0.0527 (11)0.0022 (10)0.0147 (9)−0.0008 (9)
C90.0580 (13)0.0448 (11)0.0569 (12)0.0047 (10)0.0219 (10)0.0056 (9)
C100.0724 (15)0.0471 (12)0.0641 (13)0.0061 (11)0.0338 (12)0.0062 (10)
C110.0778 (17)0.0614 (14)0.0886 (17)0.0191 (14)0.0463 (15)0.0147 (13)
C120.0648 (15)0.0764 (17)0.0840 (17)0.0203 (13)0.0297 (14)0.0266 (13)
C130.0671 (15)0.0741 (16)0.0656 (13)0.0081 (13)0.0175 (12)0.0144 (12)
C140.0647 (14)0.0591 (14)0.0589 (12)0.0133 (11)0.0212 (11)0.0046 (10)

Geometric parameters (Å, °)

C1—O11.212 (3)C8—O21.487 (3)
C1—O21.349 (3)C8—H80.9800
C1—C21.465 (3)C9—N11.390 (3)
C2—C71.377 (3)C9—C141.392 (3)
C2—C31.379 (3)C9—C101.392 (3)
C3—C41.379 (3)C10—C111.376 (3)
C3—H30.9300C10—Cl11.733 (2)
C4—C51.382 (4)C11—C121.375 (4)
C4—H40.9300C11—H110.9300
C5—C61.381 (4)C12—C131.362 (4)
C5—H50.9300C12—Cl21.737 (3)
C6—C71.384 (3)C13—C141.378 (3)
C6—H60.9300C13—H130.9300
C7—C81.494 (3)C14—H140.9300
C8—N11.400 (3)N1—H10.86 (3)
O1—C1—O2121.7 (2)O2—C8—H8108.9
O1—C1—C2129.5 (2)C7—C8—H8108.9
O2—C1—C2108.85 (18)N1—C9—C14123.02 (19)
C7—C2—C3122.3 (2)N1—C9—C10120.1 (2)
C7—C2—C1108.35 (18)C14—C9—C10116.9 (2)
C3—C2—C1129.3 (2)C11—C10—C9122.0 (2)
C4—C3—C2117.3 (2)C11—C10—Cl1118.71 (17)
C4—C3—H3121.4C9—C10—Cl1119.26 (18)
C2—C3—H3121.4C12—C11—C10119.0 (2)
C3—C4—C5120.7 (2)C12—C11—H11120.5
C3—C4—H4119.6C10—C11—H11120.5
C5—C4—H4119.6C13—C12—C11120.7 (2)
C6—C5—C4121.9 (2)C13—C12—Cl2119.6 (2)
C6—C5—H5119.1C11—C12—Cl2119.7 (2)
C4—C5—H5119.1C12—C13—C14120.0 (2)
C5—C6—C7117.3 (2)C12—C13—H13120.0
C5—C6—H6121.3C14—C13—H13120.0
C7—C6—H6121.3C13—C14—C9121.3 (2)
C2—C7—C6120.5 (2)C13—C14—H14119.3
C2—C7—C8109.26 (18)C9—C14—H14119.3
C6—C7—C8130.2 (2)C9—N1—C8122.17 (18)
N1—C8—O2112.22 (16)C9—N1—H1115.0 (17)
N1—C8—C7114.69 (17)C8—N1—H1117.1 (17)
O2—C8—C7103.07 (16)C1—O2—C8110.45 (15)
N1—C8—H8108.9
O1—C1—C2—C7−179.3 (2)C14—C9—C10—C111.4 (3)
O2—C1—C2—C71.0 (2)N1—C9—C10—Cl1−0.5 (3)
O1—C1—C2—C32.9 (3)C14—C9—C10—Cl1−179.37 (17)
O2—C1—C2—C3−176.77 (17)C9—C10—C11—C12−0.4 (4)
C7—C2—C3—C40.2 (3)Cl1—C10—C11—C12−179.66 (19)
C1—C2—C3—C4177.70 (18)C10—C11—C12—C13−0.8 (4)
C2—C3—C4—C50.2 (3)C10—C11—C12—Cl2178.56 (19)
C3—C4—C5—C60.0 (4)C11—C12—C13—C140.9 (4)
C4—C5—C6—C7−0.5 (3)Cl2—C12—C13—C14−178.4 (2)
C3—C2—C7—C6−0.8 (3)C12—C13—C14—C90.1 (4)
C1—C2—C7—C6−178.75 (17)N1—C9—C14—C13179.9 (2)
C3—C2—C7—C8176.66 (16)C10—C9—C14—C13−1.2 (3)
C1—C2—C7—C8−1.3 (2)C14—C9—N1—C8−3.5 (3)
C5—C6—C7—C20.9 (3)C10—C9—N1—C8177.7 (2)
C5—C6—C7—C8−175.9 (2)O2—C8—N1—C9−69.0 (2)
C2—C7—C8—N1123.40 (19)C7—C8—N1—C9173.83 (19)
C6—C7—C8—N1−59.5 (3)O1—C1—O2—C8179.98 (18)
C2—C7—C8—O21.11 (19)C2—C1—O2—C8−0.3 (2)
C6—C7—C8—O2178.20 (19)N1—C8—O2—C1−124.39 (18)
N1—C9—C10—C11−179.7 (2)C7—C8—O2—C1−0.46 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (3)2.36 (3)3.176 (2)159 (2)
C4—H4···O2ii0.932.573.387 (3)147

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z+1/2.

Footnotes

13-Substituted phthalides. Part XXXV.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2436).

References

  • Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn Patent No. 7 324 724.
  • Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1974). Chem. Abstr 80, 129246.
  • Bellasio, E. (1974). German Patent No. 2 422 193.
  • Bellasio, E. (1975). Chem. Abstr 83, 9788.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o2003–o2004.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881.
  • Roy, H. N. & Sarkar, M. S. (2005). Synth. Commun.35, 2177–2181.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 . Stoe & Cie, Darmstadt, Germany.
  • Tsi, D. & Tan, B. K. H. (1997). Phytother. Res.11, 576–582.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography