PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m556.
Published online 2008 March 14. doi:  10.1107/S1600536808006855
PMCID: PMC2961055

Bis[bis(1H-imidazole-κN 3)silver(I)] naphthalene-1,5-disulfonate

Abstract

The title compound, [Ag(C3H4N2)2]2(C10H6O6S2), exists in the form of isolated cations and anions with electrostatic inter­action between them. The Ag atom is two-coordinated by the N atoms of two crystallographically independent imidazole mol­ecules. The naphthalene-1,5-disulfonate anion is located on a crystallographic center of symmetry. The cations and anions are connected through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Côté & Shimizu (2003 [triangle], 2004 [triangle]); Cai (2004 [triangle]); Cai et al. (2001 [triangle]); Chen et al. (2001 [triangle], 2002 [triangle]); Dalrymple & Shimizu (2002 [triangle]); Lian et al. (2007 [triangle]); Liu et al. (2006 [triangle]); Reddy et al. (2003 [triangle]); Shimizu et al. (1999 [triangle]); Zhou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m556-scheme1.jpg

Experimental

Crystal data

  • [Ag(C3H4N2)2]2(C10H6O6S2)
  • M r = 774.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m556-efi1.jpg
  • a = 8.6491 (11) Å
  • b = 9.0196 (12) Å
  • c = 10.2620 (13) Å
  • α = 65.286 (2)°
  • β = 76.311 (2)°
  • γ = 66.791 (2)°
  • V = 665.89 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.68 mm−1
  • T = 293 (2) K
  • 0.50 × 0.30 × 0.13 mm

Data collection

  • Bruker Smart 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.487, T max = 0.811
  • 4267 measured reflections
  • 2962 independent reflections
  • 2417 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.063
  • S = 0.93
  • 2962 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006855/rk2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006855/rk2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Henan Institute of Science and Technology for financial support and we thank Professor Ji-Wen Cai for his guidance.

supplementary crystallographic information

Comment

In the part of our recent investigations into the development of mixed inorganic–organic hybrid materials, we synthesized the silver sulfonate compound, which can be possess a potential wide chemical opportunity.

Sulfonate compounds have received much attention due to their potential application in chemical absorption and separation (Cai et al., 2004; Zhou et al., 2004; Liu et al., 2006). However, the weak coordination nature of SO3–group makes its coordination mode very flexible and sensitive to the chemical environment (Côté et al., 2003). Likewise, Ag+ ion is a notoriously pliant with respect to its coordination sphere. Thus, in silver sulfonates, various coordination modes are observed with coordination number ranging from two to nine (Côté et al., 2004; Dalrymple et al., 2002; Reddy et al., 2003; Shimizu et al., 1999). On the other hand, the coordination behavior of arene–sulfonates with transition metals can be peculiar in the presence of amino ligands (Chen et al., 2001; Cai et al., 2001; Chen et al., 2002).

The structure of the title compound, (I), is depicted in Fig. 1. There is one crystallographically independent Ag centre, coordinated by two nitrogen atoms from two different imidazole ligands with Ag—N1 = 2.1088 (19)Å and Ag—N2 = 2.109 (2) Å, respectively. The lesser contact distance Ag···O1 = 2.8185 (19)Å is longer than the reported Ag···O distance (Lian et al., 2007).

Cations and anions are connected through intermolecular N—H···O hydrogen bonds to form a linear tapes (N4—H4A···O2ii): N4···O2ii = 2.786 (3) Å, H4A···O2ii = 1.96Å and angle N4—H4A···O2ii = 160.7°, which run along the a–axis. The linear tapes are arranged in parallel fashion and further linked via hydrogen bonding between the coordinated imidazole molecules and the sulfonate oxygen atoms, thus leading to neutral extended two–dimensional sheets (N2—H2A···O3iii): N2···O3iii = 2.998 (3) Å, angle N2—H2A···O3iii = 129.8° and (N2—H2A···O3iv): N2···O3iv = 3.082 (3) Å, angle N2—H2A···O3iv = 148.6° as shown on Fig. 2 (symmetry codes: (ii) 1 + x, y, z); (iii) x - 2, y + 1, z; (iv) -x, 2 - y, 2 - z).

Experimental

Disodium 1,5–naphthalene–disulfonate (0.33 g, 1 mmol) and imidazole (0.27 g, 4 mmol) were added to an aqueous solution of AgNO3 (0.32 g, 2 mmol) (10 ml). The result solution was stirred at 343 K for four hours in a water bath. After filtration, a clear solution was set aside to crystallize.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq(C or N)

Figures

Fig. 1.
Molecular structure of I with the numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres with arbitrary radius. Symmetry code: (i) 1 - x, 1 - y, 1 - z.
Fig. 2.
View of the sheet structure of I normal to the ac–plane. Hydrogen bonds are represented as dashed lines.

Crystal data

[Ag(C3H4N2)2](C10H6O6S2)Z = 1
Mr = 774.36F000 = 384
Triclinic, P1Dx = 1.931 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.6491 (11) ÅCell parameters from 2962 reflections
b = 9.0196 (12) Åθ = 2.2–27.5º
c = 10.2620 (13) ŵ = 1.68 mm1
α = 65.286 (2)ºT = 293 (2) K
β = 76.311 (2)ºBlock, colourless
γ = 66.791 (2)º0.50 × 0.30 × 0.13 mm
V = 665.89 (15) Å3

Data collection

Bruker Smart 1000 CCD diffractometer2962 independent reflections
Radiation source: Fine–focus sealed tube2417 reflections with I > 2σ(I)
Monochromator: GraphiteRint = 0.010
T = 293(2) Kθmax = 27.5º
[var phi]– and ω–scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −11→9
Tmin = 0.487, Tmax = 0.811k = −11→10
4267 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063  w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2962 reflectionsΔρmax = 0.70 e Å3
181 parametersΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.27879 (2)1.03409 (3)0.79027 (2)0.05010 (9)
S10.26541 (6)0.60865 (7)0.78924 (5)0.02831 (12)
O10.2153 (2)0.7948 (2)0.71897 (19)0.0442 (4)
O20.1257 (2)0.5487 (2)0.87280 (17)0.0403 (4)
O30.40789 (19)0.5352 (2)0.87452 (17)0.0394 (4)
N10.0163 (2)1.1487 (3)0.8293 (2)0.0375 (5)
N2−0.2347 (3)1.2925 (3)0.9009 (2)0.0432 (5)
H2A−0.31301.36070.93920.052*
N30.5433 (3)0.9312 (3)0.7528 (2)0.0452 (5)
N40.8038 (3)0.7606 (3)0.7855 (3)0.0526 (6)
H4A0.89070.67970.82720.063*
C1−0.0695 (3)1.2583 (3)0.8957 (3)0.0400 (6)
H1A−0.02111.30530.93380.048*
C2−0.2576 (3)1.2010 (4)0.8351 (3)0.0478 (6)
H2B−0.36001.19940.82300.057*
C3−0.1029 (3)1.1132 (3)0.7907 (3)0.0441 (6)
H3A−0.08011.03970.74150.053*
C40.6465 (4)0.8000 (4)0.8461 (3)0.0521 (7)
H4B0.61360.74270.94130.063*
C50.8032 (3)0.8703 (4)0.6468 (3)0.0500 (7)
H5A0.89530.87290.57830.060*
C60.6423 (3)0.9747 (4)0.6280 (3)0.0454 (6)
H6A0.60411.06370.54230.054*
C70.3281 (2)0.5262 (3)0.6470 (2)0.0261 (4)
C80.2202 (3)0.4654 (3)0.6223 (2)0.0315 (5)
H8A0.12020.46450.68100.038*
C90.2585 (3)0.4046 (3)0.5098 (3)0.0356 (5)
H9A0.18380.36370.49420.043*
C100.4037 (3)0.4044 (3)0.4227 (2)0.0303 (5)
H10A0.42810.36170.34920.036*
C110.5190 (2)0.4687 (3)0.4427 (2)0.0244 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.02873 (11)0.04781 (14)0.06505 (16)−0.00509 (8)−0.00059 (8)−0.02144 (11)
S10.0227 (2)0.0346 (3)0.0263 (3)−0.0032 (2)0.00093 (19)−0.0173 (2)
O10.0487 (10)0.0341 (9)0.0476 (10)−0.0029 (8)−0.0031 (8)−0.0236 (8)
O20.0293 (8)0.0570 (11)0.0346 (8)−0.0124 (8)0.0063 (7)−0.0233 (8)
O30.0279 (8)0.0556 (11)0.0329 (8)−0.0057 (7)−0.0030 (6)−0.0220 (8)
N10.0316 (10)0.0353 (11)0.0465 (11)−0.0088 (8)0.0017 (8)−0.0205 (9)
N20.0362 (11)0.0375 (11)0.0476 (12)−0.0032 (9)0.0050 (9)−0.0208 (10)
N30.0304 (11)0.0365 (11)0.0600 (14)−0.0080 (9)−0.0059 (10)−0.0113 (10)
N40.0325 (11)0.0442 (13)0.0836 (18)−0.0012 (9)−0.0170 (11)−0.0300 (13)
C10.0413 (13)0.0409 (14)0.0435 (13)−0.0144 (11)0.0025 (10)−0.0232 (11)
C20.0337 (13)0.0473 (15)0.0614 (17)−0.0097 (11)−0.0081 (12)−0.0203 (14)
C30.0415 (14)0.0414 (14)0.0579 (16)−0.0109 (11)−0.0037 (12)−0.0291 (13)
C40.0435 (15)0.0431 (15)0.0591 (17)−0.0119 (12)−0.0076 (13)−0.0094 (13)
C50.0403 (15)0.0558 (17)0.0661 (18)−0.0174 (13)0.0001 (13)−0.0347 (16)
C60.0423 (14)0.0419 (14)0.0541 (16)−0.0138 (12)−0.0073 (12)−0.0180 (13)
C70.0245 (10)0.0275 (10)0.0249 (10)−0.0054 (8)0.0001 (8)−0.0126 (9)
C80.0260 (11)0.0363 (12)0.0346 (11)−0.0126 (9)0.0048 (9)−0.0168 (10)
C90.0311 (12)0.0424 (13)0.0433 (13)−0.0167 (10)−0.0003 (9)−0.0223 (11)
C100.0303 (11)0.0349 (12)0.0317 (11)−0.0123 (9)0.0006 (9)−0.0182 (10)
C110.0252 (10)0.0225 (10)0.0236 (10)−0.0051 (8)−0.0016 (8)−0.0095 (8)

Geometric parameters (Å, °)

Ag1—N12.1092 (19)C2—C31.342 (4)
Ag1—N32.110 (2)C2—H2B0.9300
Ag1—O12.8180 (19)C3—H3A0.9300
S1—O11.4451 (19)C4—H4B0.9300
S1—O31.4511 (16)C5—C61.343 (4)
S1—O21.4573 (18)C5—H5A0.9300
S1—C71.787 (2)C6—H6A0.9300
N1—C11.318 (3)C7—C81.367 (3)
N1—C31.371 (3)C7—C11i1.426 (3)
N2—C11.329 (3)C8—C91.396 (3)
N2—C21.354 (4)C8—H8A0.9300
N2—H2A0.8600C9—C101.358 (3)
N3—C41.318 (3)C9—H9A0.9300
N3—C61.361 (4)C10—C111.423 (3)
N4—C41.330 (4)C10—H10A0.9300
N4—C51.351 (4)C11—C7i1.426 (3)
N4—H4A0.8600C11—C11i1.428 (4)
C1—H1A0.9300
N1—Ag1—N3176.72 (8)C2—C3—N1109.5 (2)
N1—Ag1—O189.09 (7)C2—C3—H3A125.2
N3—Ag1—O194.16 (7)N1—C3—H3A125.2
O1—S1—O3113.46 (11)N3—C4—N4110.8 (3)
O1—S1—O2113.10 (11)N3—C4—H4B124.6
O3—S1—O2111.15 (10)N4—C4—H4B124.6
O1—S1—C7105.46 (10)C6—C5—N4105.9 (3)
O3—S1—C7107.98 (9)C6—C5—H5A127.0
O2—S1—C7105.03 (10)N4—C5—H5A127.0
S1—O1—Ag1128.71 (10)C5—C6—N3110.0 (3)
C1—N1—C3105.4 (2)C5—C6—H6A125.0
C1—N1—Ag1130.79 (18)N3—C6—H6A125.0
C3—N1—Ag1123.79 (16)C8—C7—C11i120.85 (19)
C1—N2—C2107.9 (2)C8—C7—S1117.59 (16)
C1—N2—H2A126.1C11i—C7—S1121.48 (16)
C2—N2—H2A126.1C7—C8—C9120.6 (2)
C4—N3—C6105.3 (2)C7—C8—H8A119.7
C4—N3—Ag1126.0 (2)C9—C8—H8A119.7
C6—N3—Ag1128.55 (18)C10—C9—C8120.8 (2)
C4—N4—C5108.0 (2)C10—C9—H9A119.6
C4—N4—H4A126.0C8—C9—H9A119.6
C5—N4—H4A126.0C9—C10—C11120.8 (2)
N1—C1—N2110.9 (2)C9—C10—H10A119.6
N1—C1—H1A124.5C11—C10—H10A119.6
N2—C1—H1A124.5C10—C11—C7i123.01 (18)
C3—C2—N2106.3 (2)C10—C11—C11i118.9 (2)
C3—C2—H2B126.8C7i—C11—C11i118.1 (2)
N2—C2—H2B126.8
O3—S1—O1—Ag1−21.44 (16)C5—N4—C4—N3−0.2 (3)
O2—S1—O1—Ag1106.34 (13)C4—N4—C5—C60.2 (3)
C7—S1—O1—Ag1−139.42 (11)N4—C5—C6—N3−0.1 (3)
N1—Ag1—O1—S1−117.49 (14)C4—N3—C6—C50.0 (3)
N3—Ag1—O1—S162.94 (14)Ag1—N3—C6—C5−175.65 (19)
O1—Ag1—N1—C1165.5 (2)O1—S1—C7—C8−105.14 (19)
O1—Ag1—N1—C3−11.9 (2)O3—S1—C7—C8133.26 (18)
O1—Ag1—N3—C4−85.4 (2)O2—S1—C7—C814.6 (2)
O1—Ag1—N3—C689.4 (2)O1—S1—C7—C11i71.72 (19)
C3—N1—C1—N20.1 (3)O3—S1—C7—C11i−49.88 (19)
Ag1—N1—C1—N2−177.57 (16)O2—S1—C7—C11i−168.56 (16)
C2—N2—C1—N10.1 (3)C11i—C7—C8—C90.9 (3)
C1—N2—C2—C3−0.3 (3)S1—C7—C8—C9177.80 (18)
N2—C2—C3—N10.4 (3)C7—C8—C9—C100.1 (4)
C1—N1—C3—C2−0.3 (3)C8—C9—C10—C11−1.0 (4)
Ag1—N1—C3—C2177.61 (18)C9—C10—C11—C7i−179.0 (2)
C6—N3—C4—N40.1 (3)C9—C10—C11—C11i0.9 (4)
Ag1—N3—C4—N4175.93 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4A···O2ii0.861.962.786 (3)161
N2—H2A···O3iii0.862.372.998 (3)130
N2—H2A···O3iv0.862.323.082 (3)149

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y+1, z; (iv) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2068).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, J. W. (2004). Coord. Chem. Rev.248, 1061–1083.
  • Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.
  • Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr.31, 271–280.
  • Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem.41, 4967–4974. [PubMed]
  • Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev.245, 49–64.
  • Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem.43, 6663–6673. [PubMed]
  • Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J.8, 3010–3015. [PubMed]
  • Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.
  • Liu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045–3052.
  • Reddy, D. S., Duncan, S. & Shimizu, G. K. H. (2003). Angew. Chem. Int. Ed.42, 1360–1364. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.
  • Zhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493–1497. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography