PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m588.
Published online 2008 March 29. doi:  10.1107/S1600536808007770
PMCID: PMC2961054

catena-Poly[[diaquacadmium(II)]bis­(μ-pyridine-3-sulfonato)-κ2 N:O2 O:N]

Abstract

In the title polymeric complex, [Cd(C5H4NO3S)2(H2O)2]n, the Cd atom is located on a centre of inversion and is coordinated by two O atoms and two N atoms, derived from four different pyridine-3-sulfonate ligands, and two O atoms derived from two water mol­ecules, forming a distorted trans-N2O4 octa­hedral geometry. The topology of the polymer is a one-dimensional chain mediated by bridging pyridine-3-sulfonate anions. These are connected into a three-dimensional architecture via hydrogen bonds.

Related literature

For related literature, see: Allen (2002 [triangle]). For related structures, see: Brodersen et al. (1980 [triangle]); Chandrasekhar (1977 [triangle]); Cotton et al. (1992a [triangle],b [triangle]); van der Lee & Barboiu (2004 [triangle]); Mäkinen et al. (2001 [triangle]); Walsh & Hathaway (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m588-scheme1.jpg

Experimental

Crystal data

  • [Cd(C5H4NO3S)2(H2O)2]
  • M r = 464.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m588-efi1.jpg
  • a = 7.7480 (11) Å
  • b = 13.264 (2) Å
  • c = 7.3291 (11) Å
  • β = 97.081 (2)°
  • V = 747.47 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.78 mm−1
  • T = 294 (2) K
  • 0.26 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.674, T max = 0.740
  • 4111 measured reflections
  • 1520 independent reflections
  • 1396 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.053
  • S = 1.10
  • 1520 reflections
  • 115 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808007770/tk2252sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007770/tk2252Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi (GuiKeJi0639031), People’s Republic of China. This research was also sponsored by the Program for Hundred Outstanding Young Teachers in Higher Education Institutions of Guangxi, People’s Republic of China.

supplementary crystallographic information

Comment

Complexes or salts based on pyridinesulfonate are very rare in the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002). A six-coordinate complex with pyridine-3-sulfonate ligands that is closely related to the title complex, (I), has been reported (Walsh & Hathaway, 1980). Other pyridine-3-sulfonate complexes are also available (Brodersen et al., 1980; Cotton et al., 1992a, b; Mäkinen et al., 2001; van der Lee & Barboiu, 2004), as well as that of the acid (Chandrasekhar, 1977).

In (I), Fig. 1, the Cd atom is located on a centre of inversion and is six-coordinated by two N atoms and two O atoms derived from four different pyridine-3-sulfonate molecules, and two O atoms derived from two water molecules. The resulting trans-N2O4 donor sets defines a distorted octahedral environment for Cd with angles ranging from 84.76 (7) to 180°, Cd—O distances in the range 2.2872 (18) to 2.3113 (17) Å, and Cd—N distances of 2.3233 (18) and 2.3234 (18) Å.

The molecules aggregate via bridging pyridine-3-sulfonate anions to form a chain. In the crystal structure, chains are linked into a 3-D architecture via hydrogen bonding interactions, Table 1 & Fig. 2.

Experimental

Pyridine-3-sulfonate, (1 mmol, 159 mg) was dissolved in methanol (A.R., 99.9%) (10 ml). To the resulting clear solution was added CdCl2.6H2O (0.5 mmol, 149 mg) in methanol (10 ml). After keeping the resulting mixture in air to evaporate about half of the solvent, colourless blocks of (I) were deposited. The crystals were isolated, washed with ethanol three times (Yield 74%). Analysis: found: C, 25.98; H, 2.66; N, 6.08; S, 13.84; C10H12CdN2O8S2 requires: C, 25.82; H, 2.58; N, 6.02; S, 14.27.

Refinement

The C-bound H atoms were included in the riding model approximation with C—H = 0.93–0.96 Å, and with Uiso(H)= 1.2Ueq(C)-1.5Ueq(C). The water-bound H atoms were located in difference Fourier maps and the O—H distances were refined without constraint, see Table 1 for distances.

Figures

Fig. 1.
Extended structure in (I) showing the coordination geometry for the Cd atom, the atom labelling scheme and displacement ellipsoids at the 50% probability level. The Cd atom is located at a center of inversion.
Fig. 2.
Crystal packing of (I) viewed approximately down the a-direction showing the hydrogen bonding interactions as dashed lines.

Crystal data

[Cd(C5H4NO3S)2(H2O)2]F000 = 460
Mr = 464.74Dx = 2.065 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3022 reflections
a = 7.7480 (11) Åθ = 3.1–26.3º
b = 13.264 (2) ŵ = 1.78 mm1
c = 7.3291 (11) ÅT = 294 (2) K
β = 97.081 (2)ºBlock, colourless
V = 747.47 (19) Å30.26 × 0.22 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1520 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 26.3º
[var phi] and ο scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −9→6
Tmin = 0.674, Tmax = 0.740k = −16→15
4111 measured reflectionsl = −4→9

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021  w = 1/[σ2(Fo2) + (0.0952P)2 + 1.5031P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.42 e Å3
1520 reflectionsΔρmin = −0.73 e Å3
115 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.087 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.50000.50000.02008 (12)
S10.71583 (7)0.62259 (4)0.77922 (8)0.02183 (15)
N10.2044 (2)0.62074 (14)0.6090 (3)0.0246 (4)
O10.7687 (2)0.57880 (16)0.6122 (3)0.0449 (5)
O20.7069 (2)0.54880 (14)0.9231 (3)0.0392 (5)
O30.8146 (2)0.71095 (13)0.8402 (3)0.0377 (4)
C10.3697 (3)0.59388 (16)0.6647 (3)0.0234 (5)
H10.39790.52570.67220.028*
C20.4994 (3)0.66450 (17)0.7113 (3)0.0202 (4)
C30.4585 (3)0.76576 (17)0.7005 (4)0.0276 (5)
H30.54390.81430.73000.033*
C40.2885 (3)0.79362 (18)0.6450 (4)0.0317 (5)
H40.25720.86130.63800.038*
C50.1657 (3)0.71933 (18)0.6000 (3)0.0268 (5)
H50.05140.73850.56190.032*
O40.0841 (3)0.40325 (16)0.7537 (3)0.0359 (4)
H4A0.140 (4)0.426 (2)0.845 (5)0.046 (10)*
H4B0.113 (4)0.348 (3)0.733 (5)0.043 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.01370 (15)0.02211 (16)0.02355 (16)0.00007 (8)−0.00117 (9)−0.00150 (8)
S10.0152 (3)0.0238 (3)0.0254 (3)−0.0008 (2)−0.0021 (2)−0.0035 (2)
N10.0181 (9)0.0241 (9)0.0305 (10)0.0004 (8)−0.0018 (8)−0.0032 (8)
O10.0238 (9)0.0694 (14)0.0411 (11)0.0142 (9)0.0027 (8)−0.0210 (10)
O20.0327 (10)0.0345 (10)0.0475 (12)−0.0032 (8)−0.0070 (8)0.0145 (9)
O30.0270 (9)0.0304 (9)0.0518 (11)−0.0079 (7)−0.0107 (8)−0.0012 (9)
C10.0191 (11)0.0197 (10)0.0301 (12)0.0014 (8)−0.0016 (9)−0.0018 (9)
C20.0173 (10)0.0245 (11)0.0189 (10)0.0005 (8)0.0022 (8)−0.0020 (8)
C30.0231 (11)0.0207 (11)0.0391 (13)−0.0044 (9)0.0049 (10)−0.0049 (10)
C40.0297 (13)0.0211 (11)0.0444 (15)0.0042 (10)0.0047 (11)−0.0008 (10)
C50.0187 (11)0.0296 (12)0.0313 (12)0.0056 (9)−0.0001 (9)−0.0007 (10)
O40.0454 (11)0.0315 (10)0.0280 (10)0.0043 (9)−0.0059 (8)0.0025 (8)

Geometric parameters (Å, °)

Cd1—O4i2.2872 (18)O1—Cd1iv2.3113 (17)
Cd1—O42.2873 (18)C1—C21.386 (3)
Cd1—O1ii2.3113 (17)C1—H10.9300
Cd1—O1iii2.3113 (17)C2—C31.380 (3)
Cd1—N1i2.3233 (18)C3—C41.380 (4)
Cd1—N12.3234 (18)C3—H30.9300
S1—O31.4404 (18)C4—C51.382 (3)
S1—O21.4466 (19)C4—H40.9300
S1—O11.4587 (19)C5—H50.9300
S1—C21.779 (2)O4—H4A0.81 (3)
N1—C51.341 (3)O4—H4B0.79 (3)
N1—C11.344 (3)
O4i—Cd1—O4180C5—N1—Cd1121.09 (15)
O4i—Cd1—O1ii83.10 (8)C1—N1—Cd1120.36 (15)
O4—Cd1—O1ii96.90 (8)S1—O1—Cd1iv142.09 (12)
O4i—Cd1—O1iii96.90 (8)N1—C1—C2122.1 (2)
O4—Cd1—O1iii83.10 (8)N1—C1—H1119.0
O1ii—Cd1—O1iii180C2—C1—H1119.0
O4i—Cd1—N1i89.62 (7)C3—C2—C1119.3 (2)
O4—Cd1—N1i90.38 (7)C3—C2—S1121.48 (17)
O1ii—Cd1—N1i84.76 (7)C1—C2—S1119.21 (17)
O1iii—Cd1—N1i95.24 (7)C4—C3—C2118.8 (2)
O4i—Cd1—N190.37 (7)C4—C3—H3120.6
O4—Cd1—N189.63 (7)C2—C3—H3120.6
O1ii—Cd1—N195.24 (7)C3—C4—C5118.9 (2)
O1iii—Cd1—N184.76 (7)C3—C4—H4120.5
N1i—Cd1—N1180C5—C4—H4120.5
O3—S1—O2113.30 (12)N1—C5—C4122.7 (2)
O3—S1—O1113.01 (13)N1—C5—H5118.6
O2—S1—O1112.70 (13)C4—C5—H5118.6
O3—S1—C2106.20 (11)Cd1—O4—H4A122 (2)
O2—S1—C2106.70 (11)Cd1—O4—H4B115 (2)
O1—S1—C2104.03 (10)H4A—O4—H4B112 (3)
C5—N1—C1118.18 (19)
O4i—Cd1—N1—C542.65 (19)N1—C1—C2—S1−178.71 (18)
O4—Cd1—N1—C5−137.35 (19)O3—S1—C2—C38.3 (2)
O1ii—Cd1—N1—C5−40.45 (19)O2—S1—C2—C3129.5 (2)
O1iii—Cd1—N1—C5139.55 (19)O1—S1—C2—C3−111.2 (2)
O4i—Cd1—N1—C1−130.30 (18)O3—S1—C2—C1−173.02 (19)
O4—Cd1—N1—C149.70 (18)O2—S1—C2—C1−51.9 (2)
O1ii—Cd1—N1—C1146.60 (18)O1—S1—C2—C167.5 (2)
O1iii—Cd1—N1—C1−33.40 (18)C1—C2—C3—C40.6 (4)
O3—S1—O1—Cd1iv65.4 (2)S1—C2—C3—C4179.29 (19)
O2—S1—O1—Cd1iv−64.7 (2)C2—C3—C4—C5−0.8 (4)
C2—S1—O1—Cd1iv−179.9 (2)C1—N1—C5—C40.2 (4)
C5—N1—C1—C2−0.4 (3)Cd1—N1—C5—C4−172.90 (19)
Cd1—N1—C1—C2172.76 (16)C3—C4—C5—N10.4 (4)
N1—C1—C2—C30.0 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O3v0.932.393.256 (3)155
C4—H4···O2vi0.932.553.422 (3)157
O4—H4B···O3vii0.79 (3)1.99 (4)2.780 (3)176 (3)
O4—H4A···O2viii0.81 (3)1.98 (3)2.773 (3)168 (3)

Symmetry codes: (v) x−1, −y+3/2, z−1/2; (vi) −x+1, y+1/2, −z+3/2; (vii) −x+1, y−1/2, −z+3/2; (viii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2252).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brodersen, K., Dolling, R. & Liehr, G. (1980). Z. Anorg. Allg. Chem.464, 17–22.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrasekhar, K. (1977). Acta Cryst. B33, 143–145.
  • Cotton, F. A., Daniels, L. M., Montero, M. L. & Murillo, C. A. (1992b). Polyhedron, 11, 2767–2774.
  • Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1992a). Polyhedron, 11, 2475–2481.
  • Lee, A. van der & Barboiu, M. (2004). Acta Cryst. E60, m421–m423.
  • Mäkinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J.7, 5176–5182. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Walsh, B. & Hathaway, B. J. (1980). J. Chem. Soc. Dalton Trans. pp. 681–689.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography