PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o767.
Published online 2008 March 29. doi:  10.1107/S1600536808008088
PMCID: PMC2961042

N′-(2-Hydroxy­benzyl­idene)-4-methoxy­benzohydrazide

Abstract

The title Schiff base compound, C15H14N2O3, was derived from the condensation reaction of salicylaldehyde with 4-methoxy­benzohydrazide. The dihedral angle between the two benzene rings is 2.5 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains running along the b axis.

Related literature

For related structures, see: Tang (2006 [triangle], 2007a [triangle],b [triangle],c [triangle],d [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o767-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O3
  • M r = 270.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o767-efi1.jpg
  • a = 16.283 (4) Å
  • b = 5.1876 (12) Å
  • c = 16.303 (4) Å
  • β = 108.093 (2)°
  • V = 1309.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.23 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.978, T max = 0.984
  • 7166 measured reflections
  • 2862 independent reflections
  • 2288 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.03
  • 2862 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008088/sj2477sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008088/sj2477Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jiaying University Research Fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, the author has reported the structures of several Schiff base compounds (Tang, 2006, 2007a,b,c,d) and, in continuation of work in this area, reports herein the structure of the title compound, (I), Fig. 1, a new Schiff base compound.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 2.5 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, and N1—N2—C8—C9 are 1.3 (2), 11.4 (2), and 0.6 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through N—H···O intermolecular hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Experimental

Salicylaldehyde (0.1 mmol, 12.2 mg) and 4-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in an ethanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colorless solution. Colorless needle-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement

H atoms were constrained to ideal geometries, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N), 1.5Ueq(C15 and O1).

Figures

Fig. 1.
The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C15H14N2O3F000 = 568
Mr = 270.28Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2841 reflections
a = 16.283 (4) Åθ = 2.5–28.4º
b = 5.1876 (12) ŵ = 0.10 mm1
c = 16.303 (4) ÅT = 298 (2) K
β = 108.093 (2)ºCut from a needle, colorless
V = 1309.0 (5) Å30.23 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2862 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 298(2) Kθmax = 27.0º
ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −20→17
Tmin = 0.978, Tmax = 0.984k = −6→5
7166 measured reflectionsl = −20→20

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038  w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1695P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.19 e Å3
2862 reflectionsΔρmin = −0.14 e Å3
183 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (19)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.28687 (6)0.79939 (18)0.04446 (6)0.0589 (3)
H10.24150.81680.05580.071*
O20.07668 (6)0.61484 (17)0.09720 (6)0.0513 (3)
O3−0.28125 (6)0.8712 (2)0.15298 (7)0.0603 (3)
N10.18099 (6)1.0151 (2)0.11628 (7)0.0458 (3)
N20.09898 (6)1.0412 (2)0.12266 (7)0.0458 (3)
H20.07861.20250.12390.055*
C10.32018 (7)1.1824 (2)0.13304 (8)0.0418 (3)
C20.34309 (8)0.9849 (2)0.08499 (8)0.0447 (3)
C30.42580 (9)0.9783 (3)0.07764 (9)0.0539 (3)
H30.44070.84970.04510.065*
C40.48579 (9)1.1612 (3)0.11825 (9)0.0564 (4)
H4A0.54101.15480.11290.068*
C50.46509 (9)1.3546 (3)0.16693 (9)0.0559 (4)
H50.50631.47580.19500.067*
C60.38275 (8)1.3652 (3)0.17323 (8)0.0497 (3)
H60.36851.49720.20500.060*
C70.23383 (8)1.2025 (2)0.14075 (8)0.0448 (3)
H70.21721.35100.16340.054*
C80.04904 (7)0.8257 (2)0.11109 (7)0.0393 (3)
C9−0.03888 (7)0.8543 (2)0.11895 (7)0.0376 (3)
C10−0.06242 (8)1.0470 (2)0.16743 (8)0.0439 (3)
H10−0.02321.17630.19290.053*
C11−0.14321 (8)1.0465 (2)0.17758 (8)0.0475 (3)
H11−0.15801.17380.21060.057*
C12−0.20273 (8)0.8575 (2)0.13885 (8)0.0438 (3)
C13−0.18097 (8)0.6676 (2)0.08943 (8)0.0465 (3)
H13−0.22090.54170.06260.056*
C14−0.09942 (8)0.6672 (2)0.08042 (8)0.0436 (3)
H14−0.08470.53860.04780.052*
C15−0.33848 (9)0.6588 (3)0.12432 (11)0.0682 (4)
H15A−0.35310.64300.06280.102*
H15B−0.39010.68690.13970.102*
H15C−0.31080.50340.15110.102*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0530 (6)0.0498 (6)0.0720 (6)−0.0030 (4)0.0166 (5)−0.0180 (5)
O20.0492 (5)0.0387 (5)0.0677 (6)0.0032 (4)0.0206 (4)−0.0064 (4)
O30.0521 (6)0.0612 (6)0.0769 (7)−0.0039 (5)0.0339 (5)−0.0048 (5)
N10.0397 (5)0.0411 (6)0.0572 (6)0.0003 (4)0.0159 (5)0.0006 (5)
N20.0392 (5)0.0368 (6)0.0628 (7)0.0017 (4)0.0180 (5)−0.0017 (5)
C10.0423 (6)0.0367 (6)0.0455 (6)−0.0002 (5)0.0123 (5)0.0029 (5)
C20.0471 (7)0.0398 (7)0.0455 (7)0.0003 (5)0.0118 (5)0.0016 (5)
C30.0568 (8)0.0536 (8)0.0565 (8)0.0054 (6)0.0250 (6)−0.0013 (6)
C40.0476 (7)0.0623 (9)0.0647 (8)−0.0017 (6)0.0253 (6)0.0080 (7)
C50.0494 (7)0.0522 (8)0.0650 (8)−0.0130 (6)0.0163 (6)0.0007 (7)
C60.0505 (7)0.0422 (7)0.0561 (8)−0.0051 (6)0.0163 (6)−0.0040 (6)
C70.0451 (7)0.0390 (7)0.0499 (7)0.0019 (5)0.0141 (5)−0.0020 (5)
C80.0421 (6)0.0361 (6)0.0382 (6)0.0018 (5)0.0102 (5)−0.0005 (5)
C90.0418 (6)0.0334 (6)0.0368 (6)0.0006 (5)0.0111 (5)0.0014 (4)
C100.0487 (7)0.0356 (6)0.0466 (7)−0.0034 (5)0.0134 (5)−0.0069 (5)
C110.0556 (7)0.0409 (7)0.0505 (7)0.0012 (6)0.0229 (6)−0.0074 (5)
C120.0444 (6)0.0449 (7)0.0455 (6)0.0015 (5)0.0187 (5)0.0046 (5)
C130.0456 (7)0.0434 (7)0.0494 (7)−0.0079 (5)0.0131 (5)−0.0063 (5)
C140.0490 (7)0.0380 (7)0.0451 (6)−0.0019 (5)0.0165 (5)−0.0068 (5)
C150.0492 (8)0.0726 (11)0.0883 (11)−0.0098 (7)0.0293 (8)0.0025 (8)

Geometric parameters (Å, °)

O1—C21.3509 (15)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C81.2303 (14)C7—H70.9300
O3—C121.3695 (14)C8—C91.4839 (16)
O3—C151.4248 (17)C9—C141.3870 (16)
N1—C71.2773 (16)C9—C101.3997 (16)
N1—N21.3780 (14)C10—C111.3759 (17)
N2—C81.3604 (15)C10—H100.9300
N2—H20.9000C11—C121.3854 (17)
C1—C61.3974 (17)C11—H110.9300
C1—C21.4085 (17)C12—C131.3864 (17)
C1—C71.4538 (16)C13—C141.3805 (17)
C2—C31.3891 (17)C13—H130.9300
C3—C41.3750 (19)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.384 (2)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.3772 (18)
C2—O1—H1109.4O2—C8—N2121.27 (11)
C12—O3—C15117.01 (11)O2—C8—C9121.51 (10)
C7—N1—N2118.44 (11)N2—C8—C9117.19 (10)
C8—N2—N1117.41 (10)C14—C9—C10118.34 (11)
C8—N2—H2123.9C14—C9—C8117.39 (10)
N1—N2—H2117.6C10—C9—C8124.13 (10)
C6—C1—C2118.30 (11)C11—C10—C9120.40 (11)
C6—C1—C7119.64 (11)C11—C10—H10119.8
C2—C1—C7122.06 (11)C9—C10—H10119.8
O1—C2—C3117.92 (11)C10—C11—C12120.42 (11)
O1—C2—C1122.26 (11)C10—C11—H11119.8
C3—C2—C1119.82 (12)C12—C11—H11119.8
C4—C3—C2120.29 (13)O3—C12—C11116.36 (11)
C4—C3—H3119.9O3—C12—C13123.72 (11)
C2—C3—H3119.9C11—C12—C13119.92 (11)
C3—C4—C5120.86 (12)C14—C13—C12119.39 (11)
C3—C4—H4A119.6C14—C13—H13120.3
C5—C4—H4A119.6C12—C13—H13120.3
C6—C5—C4119.20 (12)C13—C14—C9121.52 (11)
C6—C5—H5120.4C13—C14—H14119.2
C4—C5—H5120.4C9—C14—H14119.2
C5—C6—C1121.51 (12)O3—C15—H15A109.5
C5—C6—H6119.2O3—C15—H15B109.5
C1—C6—H6119.2H15A—C15—H15B109.5
N1—C7—C1119.60 (11)O3—C15—H15C109.5
N1—C7—H7120.2H15A—C15—H15C109.5
C1—C7—H7120.2H15B—C15—H15C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.902.183.0112 (15)153
O1—H1···N10.821.902.6171 (14)146

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2477).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, C.-B. (2006). Acta Cryst. E62, m2629–m2630.
  • Tang, C.-B. (2007a). Acta Cryst. E63, m2654.
  • Tang, C.-B. (2007b). Acta Cryst. E63, m2785–m2786.
  • Tang, C.-B. (2007c). Acta Cryst. E63, o4545.
  • Tang, C.-B. (2007d). Acta Cryst. E63, o4841.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography