PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m520–m521.
Published online 2008 March 5. doi:  10.1107/S1600536808005655
PMCID: PMC2961041

2-Amino­pyridinium (2-amino­pyridine)trichloridonickelate(II)

Abstract

In the title compound, (C5H7N2)[NiCl3(C5H6N2)], the NiII atom is four-coordinated by three chloride anions and one N atom of a 2-amino­pyridine ligand, forming a distorted tetra­hedral coordination. In the crystal structure, cations and complex anions are linked into chains along the a, b and c axes by N—H(...)Cl hydrogen bonds, leading to the formation of a three-dimensional framework.

Related literature

For related literature, see: Batsanov & Howard (2001 [triangle]); Bis & Zaworotko (2005 [triangle]); Chao et al. (1975 [triangle]); Corain et al. (1985 [triangle]); Jebas et al. (2006 [triangle]); Valdés-Martínez et al. (2001 [triangle]); Sletten & Kovacs (1993 [triangle]); Smith et al. (2000 [triangle], 2001 [triangle]); Stibrany et al. (2004 [triangle]); Wei & Willett (1995 [triangle]); Windholz (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m520-scheme1.jpg

Experimental

Crystal data

  • (C5H7N2)[NiCl3(C5H6N2)]
  • M r = 354.3
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m520-efi1.jpg
  • a = 12.9265 (1) Å
  • b = 8.0644 (1) Å
  • c = 13.9893 (1) Å
  • β = 106.163 (1)°
  • V = 1400.67 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.94 mm−1
  • T = 100.0 (1) K
  • 0.37 × 0.08 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer with Oxford Cryosystems Cobra low-temperature attachment
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.533, T max = 0.876
  • 19539 measured reflections
  • 6427 independent reflections
  • 5088 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.079
  • S = 1.05
  • 6427 reflections
  • 167 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.64 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1953 Friedel pairs
  • Flack parameter: 0.065 (9)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005655/ci2566sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005655/ci2566Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for the award a postdoctoral research fellowship.

supplementary crystallographic information

Comment

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As a part of our investigations on the binding modes of 2-aminopyridine with metals, we report here the crystal structure of 2-aminopyridinium (2-aminopyridine)trichloronickel(II).

The asymmetric unit of the title compound contains one 2-aminopyridinium cation and one (2-aminopyridine)trichloronickel(II) anion. Protonation of atom N3 of the uncomplexed 2-aminopyridine results in the widening of the C6—N3—C10 angle to 123.3 (2)°, which is 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles are comparable with those observed in related structures (Bis & Zaworotko, 2005; Smith et al., 2000; Jebas et al., 2006).

In the monomeric complex, the NiII ion is four-coordinated by three Cl anions and the N atom of the 2-aminopyridine ligand, forming a distorted tetrahedral coordination (Fig 1). The Ni—Cl bond lengths (Table 1) are comparable with that reported in the literature (Valdés-Martínez et al., 2001; Batsanov et al., 2001; Sletten & Kovacs, 1993; Corain et al., 1985; Stibrany et al., 2004). The Cl—Ni—Cl bond angles (107.77 (2)° and 108.62 (2)°) are close to the values reported in the literature (Smith et al., 2001; Wei et al., 1995). The dihedral angle between the pyridine and pyridinium rings is 0.9 (2)°.

In the crystal structure, the cations and anionic complexes are stacked into chains along the a, b and c axes and are linked into a three-dimensional framework by N—H···Cl hydrogen bonds (Fig 2).

Experimental

Solutions of 2-aminopyridine and NiCl2.2H2O in water were mixed in a molar ratio of 2:1. Few drops of dilute hydrochloric acid were added to the solution and heated at 363 K for 2 h. Blue crystals of the title compound were obtained by slow evaporation after a period of one week.

Refinement

After checking their presence in a difference map, all H atoms except H1N3 were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). Atom H1N3 was refined isotropically.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

(C5H7N2)[NiCl3(C5H6N2)]F000 = 720
Mr = 354.3Dx = 1.68 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8411 reflections
a = 12.9265 (1) Åθ = 3.0–30.6º
b = 8.0644 (1) ŵ = 1.94 mm1
c = 13.9893 (1) ÅT = 100.0 (1) K
β = 106.163 (1)ºBlock, blue
V = 1400.67 (2) Å30.37 × 0.08 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5088 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.031
ω scansθmax = 40.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)θmin = 3.0º
Tmin = 0.533, Tmax = 0.876h = −23→23
19539 measured reflectionsk = −14→14
6427 independent reflectionsl = −25→16

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.079Δρmax = 0.52 e Å3
S = 1.05Δρmin = −0.64 e Å3
6427 reflectionsExtinction correction: none
167 parametersAbsolute structure: Flack (1983), 1953 Friedel pairs
2 restraintsFlack parameter: 0.065 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.245028 (18)0.65589 (3)0.188212 (18)0.01865 (6)
Cl10.40142 (4)0.66552 (7)0.14504 (4)0.01889 (9)
Cl20.19741 (4)0.38637 (6)0.19116 (4)0.02255 (10)
Cl30.10912 (4)0.79387 (7)0.07906 (4)0.02299 (10)
N10.26459 (13)0.7760 (2)0.31947 (12)0.0157 (3)
N20.30301 (15)0.5422 (2)0.41934 (14)0.0228 (4)
H2B0.28950.48160.36670.027*
H2C0.3220.49660.47720.027*
N30.55299 (14)0.0900 (2)0.44965 (14)0.0191 (3)
N40.53731 (16)−0.1509 (2)0.35719 (15)0.0228 (4)
H4B0.5574−0.20720.41140.027*
H4C0.5224−0.20070.30060.027*
C10.29457 (15)0.7074 (3)0.41122 (15)0.0181 (4)
C20.31669 (17)0.8074 (3)0.49792 (16)0.0213 (4)
H2A0.33840.75910.56070.026*
C30.30568 (17)0.9761 (3)0.48792 (18)0.0254 (4)
H3A0.31991.04310.54420.03*
C40.27352 (17)1.0463 (3)0.39438 (18)0.0245 (4)
H4A0.26521.16050.38670.029*
C50.25411 (16)0.9441 (3)0.31322 (17)0.0198 (4)
H5A0.23260.9920.25030.024*
C60.52944 (15)0.0123 (2)0.36071 (15)0.0173 (3)
C70.49768 (16)0.1116 (3)0.27449 (16)0.0203 (4)
H7A0.48130.06280.21180.024*
C80.49108 (16)0.2795 (3)0.28322 (16)0.0217 (4)
H8A0.47040.34470.22620.026*
C90.51508 (17)0.3550 (3)0.37731 (18)0.0229 (4)
H9A0.50930.46930.38320.027*
C100.54691 (16)0.2575 (3)0.45963 (17)0.0222 (4)
H10A0.56450.30510.52270.027*
H1N30.571 (2)0.030 (3)0.499 (2)0.023 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02016 (11)0.02167 (12)0.01419 (12)−0.00140 (10)0.00489 (9)−0.00168 (10)
Cl10.0188 (2)0.0211 (2)0.0179 (2)−0.00022 (15)0.00699 (18)−0.00025 (16)
Cl20.0285 (2)0.0194 (2)0.0211 (2)−0.00610 (19)0.0092 (2)−0.00511 (18)
Cl30.0208 (2)0.0324 (3)0.0142 (2)0.00279 (19)0.00214 (17)0.00196 (19)
N10.0151 (7)0.0181 (7)0.0133 (7)−0.0002 (6)0.0030 (6)0.0000 (6)
N20.0313 (9)0.0201 (9)0.0150 (8)0.0021 (7)0.0032 (7)0.0003 (6)
N30.0170 (7)0.0273 (9)0.0132 (8)0.0013 (6)0.0043 (6)0.0020 (7)
N40.0283 (9)0.0220 (8)0.0168 (9)−0.0019 (7)0.0038 (7)0.0029 (6)
C10.0146 (8)0.0238 (10)0.0165 (9)0.0012 (6)0.0053 (7)0.0011 (7)
C20.0180 (8)0.0307 (11)0.0149 (9)−0.0009 (7)0.0043 (7)−0.0018 (8)
C30.0224 (9)0.0269 (11)0.0278 (12)−0.0030 (8)0.0087 (9)−0.0105 (9)
C40.0251 (10)0.0189 (9)0.0309 (12)−0.0026 (8)0.0099 (9)−0.0067 (9)
C50.0195 (8)0.0179 (9)0.0224 (10)−0.0007 (7)0.0065 (8)−0.0002 (8)
C60.0153 (8)0.0220 (9)0.0142 (9)−0.0021 (7)0.0035 (7)0.0011 (7)
C70.0183 (8)0.0269 (10)0.0145 (9)0.0001 (7)0.0023 (7)0.0026 (8)
C80.0201 (9)0.0261 (10)0.0185 (10)0.0034 (8)0.0050 (8)0.0059 (8)
C90.0204 (9)0.0225 (10)0.0272 (12)0.0019 (7)0.0092 (9)−0.0010 (8)
C100.0183 (8)0.0288 (11)0.0200 (10)0.0008 (8)0.0062 (8)−0.0052 (8)

Geometric parameters (Å, °)

Ni1—N12.0287 (17)C2—C31.371 (3)
Ni1—Cl22.2625 (6)C2—H2A0.93
Ni1—Cl12.2665 (5)C3—C41.380 (3)
Ni1—Cl32.2722 (6)C3—H3A0.93
N1—C11.352 (3)C4—C51.369 (3)
N1—C51.363 (3)C4—H4A0.93
N2—C11.339 (3)C5—H5A0.93
N2—H2B0.86C6—C71.410 (3)
N2—H2C0.86C7—C81.364 (3)
N3—C61.350 (3)C7—H7A0.93
N3—C101.362 (3)C8—C91.404 (3)
N3—H1N30.82 (3)C8—H8A0.93
N4—C61.322 (3)C9—C101.360 (3)
N4—H4B0.86C9—H9A0.93
N4—H4C0.86C10—H10A0.93
C1—C21.417 (3)
N1—Ni1—Cl2114.10 (5)C2—C3—C4120.0 (2)
N1—Ni1—Cl1109.21 (5)C2—C3—H3A120
Cl2—Ni1—Cl1107.77 (2)C4—C3—H3A120
N1—Ni1—Cl3104.63 (5)C5—C4—C3118.5 (2)
Cl2—Ni1—Cl3108.62 (2)C5—C4—H4A120.8
Cl1—Ni1—Cl3112.60 (2)C3—C4—H4A120.8
C1—N1—C5117.72 (18)N1—C5—C4123.6 (2)
C1—N1—Ni1126.48 (14)N1—C5—H5A118.2
C5—N1—Ni1115.59 (13)C4—C5—H5A118.2
C1—N2—H2B120N4—C6—N3119.8 (2)
C1—N2—H2C120N4—C6—C7122.7 (2)
H2B—N2—H2C120N3—C6—C7117.51 (19)
C6—N3—C10123.36 (19)C8—C7—C6119.8 (2)
C6—N3—H1N3115.9 (18)C8—C7—H7A120.1
C10—N3—H1N3120.7 (18)C6—C7—H7A120.1
C6—N4—H4B120C7—C8—C9120.7 (2)
C6—N4—H4C120C7—C8—H8A119.6
H4B—N4—H4C120C9—C8—H8A119.6
N2—C1—N1118.88 (18)C10—C9—C8118.6 (2)
N2—C1—C2120.05 (19)C10—C9—H9A120.7
N1—C1—C2121.1 (2)C8—C9—H9A120.7
C3—C2—C1119.1 (2)C9—C10—N3119.9 (2)
C3—C2—H2A120.4C9—C10—H10A120
C1—C2—H2A120.4N3—C10—H10A120
Cl2—Ni1—N1—C128.37 (17)C2—C3—C4—C5−0.5 (3)
Cl1—Ni1—N1—C1−92.28 (15)C1—N1—C5—C40.8 (3)
Cl3—Ni1—N1—C1146.95 (15)Ni1—N1—C5—C4−174.29 (16)
Cl2—Ni1—N1—C5−156.98 (11)C3—C4—C5—N10.1 (3)
Cl1—Ni1—N1—C582.36 (13)C10—N3—C6—N4179.99 (18)
Cl3—Ni1—N1—C5−38.41 (13)C10—N3—C6—C70.4 (3)
C5—N1—C1—N2178.47 (16)N4—C6—C7—C8179.96 (19)
Ni1—N1—C1—N2−7.0 (3)N3—C6—C7—C8−0.5 (3)
C5—N1—C1—C2−1.4 (3)C6—C7—C8—C9−0.3 (3)
Ni1—N1—C1—C2173.14 (13)C7—C8—C9—C101.1 (3)
N2—C1—C2—C3−178.84 (18)C8—C9—C10—N3−1.2 (3)
N1—C1—C2—C31.0 (3)C6—N3—C10—C90.5 (3)
C1—C2—C3—C40.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1N3···Cl2i0.82 (3)2.81 (3)3.380 (2)128 (2)
N2—H2B···Cl20.862.533.3475 (19)159
N2—H2C···Cl1ii0.862.633.4866 (19)172
N4—H4B···Cl3i0.862.363.197 (2)165
N4—H4C···Cl1iii0.862.543.344 (2)156

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2566).

References

  • Batsanov, A. S. & Howard, J. A. K. (2001). Acta Cryst. E57, m308–m309.
  • Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des.5, 1169–1179.
  • Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  • Corain, B., Longato, B., Angeletti, R. & Valle, G. (1985). Inorg. Chim. Acta, 104, 15–18.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, m1818–m1819.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sletten, J. & Kovacs, J. A. (1993). J. Crystallogr. Spectrosc. Res.23, 239.
  • Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506. [PubMed]
  • Smith, M. C., Davies, S. C., Hughes, D. L. & Evans, D. J. (2001). Acta Cryst. E57, m509–m510.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stibrany, R. T., Matturro, M. G., Zushma, S. & Patil, A. O. (2004). Acta Cryst. E60, m188–m189.
  • Valdés-Martínez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). Acta Cryst. E57, m137–m139.
  • Wei, M. & Willett, R. D. (1995). Inorg. Chem.34, 3780–3782.
  • Windholz, M. (1976). The Merck Index, 9th ed. Rahway, New Jersey, USA: Merck & Co., Inc.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography