PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o663–o664.
Published online 2008 March 5. doi:  10.1107/S1600536808005552
PMCID: PMC2961038

Methyl 2-{[(4-hydroxy­phen­yl)(methoxy­carbon­yl)meth­yl]amino­carbon­yl}ethano­ate hemihydrate

Abstract

In the structure of the title compound, C13H15NO6·0.5H2O, the water O atom lies on a twofold rotation axis. The methoxy­carbonyl­methyl and amino groups are essentially coplanar and the methoxy­carbonyl­methyl group makes a dihedral angle of 79.73 (10)° with the mean plane of the hydroxy­phenyl ring. The amino and methoxy­carbonyl­methyl groups are involved in an intra­molecular N—H(...)O hydrogen bond which generates an S(5) ring motif. In the crystal structure, mol­ecules are linked via N—H(...)O and O—H(...)O hydrogen bonds and weak C—H(...)O inter­actions into a two-dimensional network parallel to the (An external file that holds a picture, illustration, etc.
Object name is e-64-0o663-efi1.jpg01) plane. The crystal structure is further stabilized by C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For details of the biological properties of compounds containing tetra­mic acid, see for example: Iida et al. (1986 [triangle]); Matkhalikova et al. (1969 [triangle]); Reddy & Rao (2006 [triangle]); Reiner (2007 [triangle]); Royles (1996 [triangle]). For the syntheses of compounds containing tetra­mic acid units, see for example: Steglich (1989 [triangle]); Royles (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o663-scheme1.jpg

Experimental

Crystal data

  • C13H15NO6·0.5H2O
  • M r = 290.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o663-efi2.jpg
  • a = 22.7764 (12) Å
  • b = 5.3046 (3) Å
  • c = 13.0686 (6) Å
  • β = 117.612 (3)°
  • V = 1399.11 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100.0 (1) K
  • 0.41 × 0.19 × 0.04 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.956, T max = 0.996
  • 9426 measured reflections
  • 2248 independent reflections
  • 1884 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.090
  • S = 1.06
  • 2248 reflections
  • 200 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005552/sj2467sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005552/sj2467Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the generous support of both the Universiti Teknologi MARA and the Universiti Sains Malaysia as well as the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

Natural products containing tetramic acid goups continue to attract the interest of chemists and biologists due to their challenging structures and remarkable biological properties (Iida et al., 1986; Matkhalikova et al., 1969; Reddy & Rao, 2006; Reiner, 2007; Royles, 1996). Among these, tetramic acids carrying an aromatic substituent on the ring are rarely found in nature (Reddy & Rao, 2006). The title compound, C13H15NO6, can act as an essential intermediate in the synthesis of compounds responsible for the orange-yellow colour of plasmodia from Leocarpus fragilis (Steglich, 1989; Royles, 1995). We have synthesized the title compound and its structure is reported here.

The asymmetric unit of the title compound contains one molecule of C13H15NO6 and half an H2O molecule with the O1W atom lying on a twofold rotation axis, (Fig. 1). The methoxycarbonylmethyl [C4/C5/C7/O3/O5] and the C3/N1/C4 amino sections of the molecule are essentially coplanar with a dihedral angle of 3.12 (10)° between them. An intramolecular N1—H1N1···O3 hydrogen bond (Fig. 1) generates an S(5) ring motif (Bernstein et al., 1995) and contributes to this planarity.

In the 3-oxopropanoate moiety [C1–C3/C6/O1/O2/O4], atoms C1, C2, C6, O1 and O4 lie on the same plane with C1 deviating by a maximum of -0.017 (2) Å. Similarly atoms C3, O2, C4, C5, N1 and O3 lie on the same plane with the maximum deviation -0.058 (2) Å for C4. The dihedral angle between these two planes is 70.29 (11) Å. The methoxycarbonylmethyl moiety makes a dihedral angle of 79.73 (10) Å with the hydroxyphenyl ring. The water molecule links with the C13H15NO6 molecule via an N1—H1N1···O1W hydrogen bond (Fig. 1). All bond lengths and angles show normal values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are stacked down both the [010] and [102] directions forming a two dimensional network parallel to the (-2 0 1) plane via N—H···O, O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The crystal is further stablized by C—H···π interactions (Table 1); Cg1 is the centroid of the C8–C13 phenyl ring.

Experimental

The title compound was synthesized via condensation between an equimolar amount of hydroxyphenylglycine methylester (10.0 g, 60 mmol) and methylmalonate potassium salt (9.4 g, 60 mmol) in acetonitrile/water (140:40 ml) at 273 K. The mixture was stirred for 2 h in the presence of dicyclohexylcarbodiimide, which acted as a catalyst and a peptide-coupling agent. The white precipitate formed during the reaction was filtered and washed thoroughly with dichloromethane. The filtrate and the dichloromethane were combined and evaporated. The resulting crude product was partitioned between water and dichloromethane, and the dichloromethane extract was dried over anhydrous magnesium sulfate and evaporated. Colorless needle-shaped single crystals suitable for X-ray structure determination were obtained by slow evaporation of dichloromethane/petroleum ether (5:1 v/v) solution after several days (10.93 g, 65%).

Refinement

The amino, hydroxyl and water hydrogen atoms were located in a difference map and refined isotropically. Hydrogen atoms attached to the carbon atoms were constrained in a riding motion approximation with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso = 1.2Ueq(C) for CH, 0.97 Å, Uiso = 1.2Ueq(C) for CH2, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. In the absence of significant anomalous scattering effects, a total of 1388 Friedel pairs were merged before final refinement.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. N—H···O hydrogen bonds are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed along the [102] direction. Hydrogen bonds are drawn as dashed lines.

Crystal data

C13H15NO6·0.5H2OF000 = 612
Mr = 290.27Dx = 1.378 Mg m3
Monoclinic, C2Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2248 reflections
a = 22.7764 (12) Åθ = 1.8–30.0º
b = 5.3046 (3) ŵ = 0.11 mm1
c = 13.0686 (6) ÅT = 100.0 (1) K
β = 117.612 (3)ºNeedle, colorless
V = 1399.11 (13) Å30.41 × 0.19 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer2248 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 1.8º
ω scansh = −29→31
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −7→7
Tmin = 0.956, Tmax = 0.996l = −18→18
9426 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0406P)2 + 0.4523P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2248 reflectionsΔρmax = 0.39 e Å3
200 parametersΔρmin = −0.24 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.50000.8858 (5)0.50000.0242 (5)
H1W0.4734 (14)0.998 (7)0.518 (2)0.058 (9)*
O10.41331 (9)0.1694 (5)0.55170 (15)0.0512 (6)
O20.36387 (7)0.1785 (3)0.28492 (11)0.0255 (3)
O30.51628 (9)0.7925 (4)0.27318 (16)0.0435 (5)
O40.32338 (7)0.3629 (4)0.53519 (12)0.0311 (4)
O50.52565 (7)0.5121 (3)0.15432 (12)0.0250 (3)
O60.23720 (7)0.3718 (3)−0.23284 (11)0.0232 (3)
H1O60.2058 (14)0.488 (7)−0.250 (2)0.046 (8)*
N10.43133 (8)0.5081 (4)0.31026 (13)0.0196 (4)
H1N10.4513 (13)0.650 (6)0.351 (2)0.039 (7)*
C10.37123 (10)0.3244 (4)0.50613 (16)0.0231 (5)
C20.36758 (10)0.5050 (5)0.41546 (17)0.0239 (4)
H2A0.39630.64770.45220.029*
H2B0.32260.56760.37280.029*
C30.38810 (9)0.3812 (5)0.33240 (15)0.0201 (4)
C40.44916 (9)0.4168 (4)0.22326 (14)0.0178 (4)
H40.46840.24790.24500.021*
C50.50120 (10)0.5952 (4)0.22279 (16)0.0213 (4)
C60.32471 (12)0.1992 (6)0.62502 (18)0.0382 (6)
H6A0.31500.02950.59660.057*
H6B0.29210.25460.64730.057*
H6C0.36780.20510.69070.057*
C70.57232 (10)0.6792 (5)0.14299 (18)0.0275 (5)
H7A0.55300.84380.12090.041*
H7B0.58310.61520.08500.041*
H7C0.61190.68970.21550.041*
C80.39035 (9)0.4061 (4)0.10253 (14)0.0173 (4)
C90.34208 (9)0.5916 (4)0.06352 (15)0.0185 (4)
H90.34470.72340.11240.022*
C100.28956 (9)0.5828 (4)−0.04846 (15)0.0186 (4)
H100.25710.7071−0.07380.022*
C110.28619 (9)0.3874 (4)−0.12164 (14)0.0171 (4)
C120.33391 (9)0.1994 (4)−0.08248 (15)0.0202 (4)
H120.33120.0669−0.13110.024*
C130.38579 (9)0.2087 (4)0.02927 (15)0.0189 (4)
H130.41770.08200.05520.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.0252 (10)0.0249 (12)0.0262 (9)0.0000.0151 (9)0.000
O10.0576 (11)0.0695 (15)0.0432 (9)0.0427 (12)0.0373 (9)0.0351 (11)
O20.0250 (7)0.0272 (8)0.0224 (6)−0.0058 (7)0.0094 (6)0.0016 (7)
O30.0540 (11)0.0432 (12)0.0547 (11)−0.0279 (9)0.0432 (10)−0.0289 (9)
O40.0244 (7)0.0455 (11)0.0303 (7)0.0075 (8)0.0185 (6)0.0128 (8)
O50.0257 (7)0.0254 (8)0.0320 (7)−0.0051 (7)0.0204 (6)−0.0065 (7)
O60.0202 (7)0.0268 (9)0.0176 (6)0.0031 (7)0.0046 (5)−0.0047 (6)
N10.0196 (8)0.0240 (9)0.0163 (7)−0.0034 (8)0.0093 (6)−0.0012 (7)
C10.0205 (10)0.0301 (13)0.0188 (8)0.0034 (9)0.0093 (7)0.0033 (8)
C20.0220 (9)0.0286 (11)0.0240 (9)0.0026 (9)0.0132 (8)0.0046 (9)
C30.0159 (8)0.0270 (11)0.0148 (7)0.0007 (9)0.0048 (7)0.0048 (9)
C40.0174 (8)0.0200 (10)0.0166 (7)−0.0016 (8)0.0083 (7)−0.0003 (8)
C50.0200 (9)0.0237 (11)0.0199 (8)−0.0016 (9)0.0091 (7)−0.0025 (9)
C60.0391 (13)0.0542 (17)0.0285 (10)−0.0056 (14)0.0218 (10)0.0085 (13)
C70.0255 (10)0.0311 (12)0.0337 (10)−0.0055 (10)0.0203 (9)−0.0048 (10)
C80.0175 (8)0.0181 (10)0.0175 (7)−0.0034 (8)0.0091 (7)0.0017 (8)
C90.0218 (9)0.0178 (10)0.0184 (8)−0.0006 (8)0.0115 (7)−0.0022 (8)
C100.0191 (9)0.0168 (10)0.0208 (8)0.0018 (8)0.0099 (7)0.0011 (8)
C110.0157 (8)0.0187 (10)0.0168 (7)−0.0006 (8)0.0074 (7)0.0003 (8)
C120.0233 (10)0.0183 (10)0.0196 (8)−0.0002 (9)0.0105 (8)−0.0030 (8)
C130.0182 (9)0.0174 (10)0.0211 (8)0.0011 (8)0.0092 (7)0.0000 (8)

Geometric parameters (Å, °)

O1W—H1W0.95 (3)C4—C81.526 (2)
O1—C11.192 (3)C4—H40.9800
O2—C31.236 (3)C6—H6A0.9600
O3—C51.199 (3)C6—H6B0.9600
O4—C11.326 (2)C6—H6C0.9600
O4—C61.449 (3)C7—H7A0.9600
O5—C51.329 (3)C7—H7B0.9600
O5—C71.443 (3)C7—H7C0.9600
O6—C111.364 (2)C8—C91.385 (3)
O6—H1O60.89 (3)C8—C131.390 (3)
N1—C31.331 (3)C9—C101.397 (2)
N1—C41.456 (2)C9—H90.9300
N1—H1N10.91 (3)C10—C111.388 (3)
C1—C21.496 (3)C10—H100.9300
C2—C31.516 (3)C11—C121.386 (3)
C2—H2A0.9700C12—C131.390 (2)
C2—H2B0.9700C12—H120.9300
C4—C51.519 (3)C13—H130.9300
C1—O4—C6115.36 (18)H6A—C6—H6B109.5
C5—O5—C7115.06 (18)O4—C6—H6C109.5
C11—O6—H1O6112.7 (18)H6A—C6—H6C109.5
C3—N1—C4120.25 (18)H6B—C6—H6C109.5
C3—N1—H1N1120.7 (17)O5—C7—H7A109.5
C4—N1—H1N1119.0 (17)O5—C7—H7B109.5
O1—C1—O4122.7 (2)H7A—C7—H7B109.5
O1—C1—C2125.06 (19)O5—C7—H7C109.5
O4—C1—C2112.13 (18)H7A—C7—H7C109.5
C1—C2—C3111.5 (2)H7B—C7—H7C109.5
C1—C2—H2A109.3C9—C8—C13119.26 (16)
C3—C2—H2A109.3C9—C8—C4121.39 (18)
C1—C2—H2B109.3C13—C8—C4119.34 (18)
C3—C2—H2B109.3C8—C9—C10120.66 (18)
H2A—C2—H2B108.0C8—C9—H9119.7
O2—C3—N1122.28 (19)C10—C9—H9119.7
O2—C3—C2121.48 (19)C11—C10—C9119.58 (18)
N1—C3—C2116.2 (2)C11—C10—H10120.2
N1—C4—C5107.25 (16)C9—C10—H10120.2
N1—C4—C8113.02 (16)O6—C11—C12117.66 (18)
C5—C4—C8109.38 (15)O6—C11—C10122.39 (18)
N1—C4—H4109.0C12—C11—C10119.95 (16)
C5—C4—H4109.0C11—C12—C13120.13 (19)
C8—C4—H4109.0C11—C12—H12119.9
O3—C5—O5123.8 (2)C13—C12—H12119.9
O3—C5—C4124.54 (19)C12—C13—C8120.40 (19)
O5—C5—C4111.55 (18)C12—C13—H13119.8
O4—C6—H6A109.5C8—C13—H13119.8
O4—C6—H6B109.5
C6—O4—C1—O1−1.3 (3)C8—C4—C5—O5−63.6 (2)
C6—O4—C1—C2−178.40 (19)N1—C4—C8—C938.6 (3)
O1—C1—C2—C338.6 (3)C5—C4—C8—C9−80.8 (2)
O4—C1—C2—C3−144.42 (18)N1—C4—C8—C13−142.68 (19)
C4—N1—C3—O23.3 (3)C5—C4—C8—C1397.9 (2)
C4—N1—C3—C2−174.03 (16)C13—C8—C9—C10−0.5 (3)
C1—C2—C3—O250.6 (2)C4—C8—C9—C10178.14 (18)
C1—C2—C3—N1−132.06 (19)C8—C9—C10—C11−0.7 (3)
C3—N1—C4—C5−177.48 (17)C9—C10—C11—O6−178.20 (18)
C3—N1—C4—C861.9 (2)C9—C10—C11—C121.5 (3)
C7—O5—C5—O3−0.6 (3)O6—C11—C12—C13178.59 (19)
C7—O5—C5—C4176.08 (16)C10—C11—C12—C13−1.2 (3)
N1—C4—C5—O3−10.0 (3)C11—C12—C13—C8−0.1 (3)
C8—C4—C5—O3113.0 (2)C9—C8—C13—C120.9 (3)
N1—C4—C5—O5173.45 (16)C4—C8—C13—C12−177.78 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.95 (4)1.86 (3)2.803 (3)170 (3)
N1—H1N1···O1W0.91 (3)2.14 (3)3.002 (3)157 (2)
N1—H1N1···O30.91 (3)2.28 (3)2.669 (3)105 (2)
O6—H1O6···O2ii0.89 (4)1.75 (3)2.638 (2)171 (3)
C2—H2A···O1W0.972.493.363 (3)150
C2—H2B···O6ii0.972.343.146 (3)140
C6—H6B···O6iii0.962.493.420 (3)162
C7—H7B···Cg1iv0.962.683.574 (3)155
C10—H10···Cg1ii0.933.013.717 (2)134

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z; (iii) x, y, z+1; (iv) −x+1, y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2467).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett.27, 5393–5396.
  • Matkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr 71, 13245z.
  • Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem.76, 2224–2227.
  • Reiner, S. (2007). Naturwissenschaften, 94, 1–11.
  • Royles, B. J. L. (1996). Chem. Rev.95, 1961–2001.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Steglich, W. (1989). Pure Appl. Chem.61, 281–288.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography