PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o737.
Published online 2008 March 29. doi:  10.1107/S1600536808007435
PMCID: PMC2961035

N-(2-Benzoyl-4-chloro­phen­yl)-4-chloro­benzene­sulfonamide

Abstract

The title compound, C19H13Cl2NO3S, is an N-aryl­sulfonyl derivative of 2-amino-5-chloro­benzophenone. The compound is biologically active and shows potential to be utilized as an inhibitor of CCR2 and CCR9 receptor functions. In the crystal structure, there is an intra­molecular N—H(...)O hydrogen bond between the amide and carbonyl groups. The benzoyl and 4-chloro­phenyl groups form intra­molecular and inter­molecular face-to-face contacts, with a dihedral angle of 10.6 (1)° between their mean planes in both cases, and centroid–centroid separations of 4.00 (1) and 4.25 (1) Å for the intra- and inter­molecular inter­actions, respectively.

Related literature

For related literature, see: Basak et al. (2008 [triangle]); Fleming et al. (2003 [triangle]); Kolehmainen et al. (2003 [triangle]); Sternbach et al. (1962 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o737-scheme1.jpg

Experimental

Crystal data

  • C19H13Cl2NO3S
  • M r = 406.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o737-efi1.jpg
  • a = 8.2307 (1) Å
  • b = 18.5014 (3) Å
  • c = 12.1364 (2) Å
  • β = 105.211 (1)°
  • V = 1783.38 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 173 (2) K
  • 0.25 × 0.25 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: none
  • 13987 measured reflections
  • 4401 independent reflections
  • 3534 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.084
  • S = 1.05
  • 4401 reflections
  • 238 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Bruker, 2004 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003 [triangle]) and Mercury (Macrae et al., 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007435/bi2286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007435/bi2286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound was originally prepared to study its molecular structure by spectroscopy (Kolehmainen et al., 2003). The compound has a sulfone group showing strong electron acceptor capability and two S=O double bonds with ineffective conjugation properties with other double bonds. The compound has also shown a potential to be utilized as inhibitor of CCR2 (Basak et al., 2008) and CCR9 (Fleming et al., 2003) receptor functions. This potent antagonist can possibly be utilized in pharmaceutical compositions for treatment of CCR2 and CCR9 related diseases.

In the crystal, there is an intramolecular N—H···O hydrogen bond between the amide and carbonyl groups (Fig. 1). The benzoyl and 4-chlorophenyl groups form intramolecular (Fig. 2) and intermolecular face-to-face contacts (Fig. 3), with a dihedral angle of 10.6 (1)° between their mean planes in both cases, and a centroid-centroid separation of 4.00 (1) and 4.25 (1)Å for the intra- and intermolecular interactions, respectively.

Experimental

The title compound was obtained by condensation of 2-amino-5-chlorobenzophenone and 4-chlorobenzenesulfonyl chloride according to a previously described method (Sternbach et al., 1962). The reaction product was purified by crystallization from ethanol. The spectroscopic characterization (NMR, IR) has previously been reported by us (Kolehmainen et al., 2003). The single-crystal suitable for X-ray determination was obtained by extremely slow evaporation of a CDCl3 solution in a NMR tube.

Refinement

All H atoms were visible in electron density maps, but those bound to C were placed in idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å with Uiso(H) = 1.2Ueq(C). The position of the N—H proton was refined with the N—H distance restrained to 0.91 (2) Å and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size
Fig. 2.
Molecular conformation with selected geometric parameters
Fig. 3.
Packing viewed along the a-axis showing the stack-like architecture

Crystal data

C19H13Cl2NO3SF000 = 832
Mr = 406.26Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 31954 reflections
a = 8.2307 (1) Åθ = 0.4–28.3º
b = 18.5014 (3) ŵ = 0.50 mm1
c = 12.1364 (2) ÅT = 173 (2) K
β = 105.211 (1)ºBlock, yellow
V = 1783.38 (5) Å30.25 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3534 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Monochromator: graphiteθmax = 28.3º
T = 173(2) Kθmin = 2.1º
[var phi] and ω scansh = −10→10
Absorption correction: nonek = −24→24
13987 measured reflectionsl = −14→16
4401 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084  w = 1/[σ2(Fo2) + (0.0187P)2 + 1.5712P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4401 reflectionsΔρmax = 0.32 e Å3
238 parametersΔρmin = −0.31 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.44574 (7)0.01345 (3)0.80411 (4)0.03185 (13)
S10.95358 (6)0.13899 (3)0.46317 (4)0.02381 (11)
Cl20.64457 (7)0.44781 (3)0.45821 (5)0.03514 (13)
O10.47941 (18)0.13671 (8)0.33815 (11)0.0301 (3)
O31.00797 (18)0.13033 (8)0.36105 (13)0.0331 (3)
O21.06708 (17)0.12706 (8)0.57308 (12)0.0310 (3)
N10.7971 (2)0.08200 (9)0.44914 (14)0.0239 (3)
H10.729 (2)0.0856 (12)0.3815 (14)0.029*
C40.7144 (3)0.01218 (10)0.71469 (17)0.0270 (4)
H40.7690−0.01640.77870.032*
C150.7816 (2)0.25730 (11)0.35920 (17)0.0261 (4)
H150.76890.23120.29000.031*
C70.4749 (2)0.15092 (10)0.43573 (16)0.0220 (4)
C60.4742 (2)0.08317 (10)0.61488 (16)0.0231 (4)
H60.36520.10180.61070.028*
C10.5564 (2)0.10128 (10)0.53194 (16)0.0215 (4)
C140.8692 (2)0.22691 (10)0.46257 (16)0.0227 (4)
C100.2063 (3)0.31757 (12)0.3887 (2)0.0358 (5)
H100.12500.33970.32780.043*
C170.7328 (2)0.36241 (10)0.45946 (17)0.0246 (4)
C180.8210 (3)0.33297 (11)0.56290 (17)0.0279 (4)
H180.83450.35940.63180.033*
C160.7129 (3)0.32578 (11)0.35766 (17)0.0268 (4)
H160.65300.34720.28760.032*
C20.7158 (2)0.07170 (10)0.53854 (16)0.0220 (4)
C80.3942 (2)0.21889 (10)0.46066 (16)0.0222 (4)
C190.8891 (2)0.26433 (11)0.56418 (17)0.0261 (4)
H190.94910.24310.63430.031*
C90.2776 (3)0.25261 (11)0.37109 (17)0.0280 (4)
H90.24730.23070.29770.034*
C30.7952 (2)0.02892 (10)0.63138 (17)0.0262 (4)
H30.90550.01110.63760.031*
C50.5527 (2)0.03774 (10)0.70344 (16)0.0232 (4)
C130.4391 (3)0.25198 (11)0.56727 (17)0.0266 (4)
H130.51740.22910.62900.032*
C110.2525 (3)0.35055 (11)0.4944 (2)0.0362 (5)
H110.20360.39550.50580.043*
C120.3699 (3)0.31836 (11)0.58384 (19)0.0334 (5)
H120.40300.34150.65620.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0399 (3)0.0286 (3)0.0302 (3)−0.0016 (2)0.0148 (2)0.0021 (2)
S10.0222 (2)0.0227 (2)0.0275 (3)0.00388 (18)0.00828 (19)0.00123 (19)
Cl20.0431 (3)0.0224 (2)0.0419 (3)0.0072 (2)0.0147 (2)−0.0016 (2)
O10.0341 (8)0.0324 (8)0.0215 (7)0.0044 (6)0.0029 (6)−0.0029 (6)
O30.0374 (8)0.0304 (8)0.0375 (8)0.0066 (6)0.0202 (7)0.0006 (6)
O20.0221 (7)0.0336 (8)0.0349 (8)0.0041 (6)0.0031 (6)0.0044 (6)
N10.0255 (8)0.0219 (8)0.0239 (9)−0.0003 (7)0.0058 (7)−0.0030 (7)
C40.0304 (10)0.0195 (9)0.0283 (10)0.0012 (8)0.0029 (8)0.0045 (8)
C150.0321 (11)0.0250 (10)0.0210 (10)0.0016 (8)0.0064 (8)−0.0016 (8)
C70.0191 (9)0.0223 (9)0.0229 (10)−0.0021 (7)0.0024 (7)−0.0010 (7)
C60.0217 (9)0.0202 (9)0.0267 (10)0.0005 (7)0.0050 (8)−0.0016 (8)
C10.0227 (9)0.0169 (9)0.0223 (9)−0.0004 (7)0.0013 (7)−0.0017 (7)
C140.0226 (9)0.0223 (9)0.0243 (10)0.0010 (7)0.0079 (8)0.0013 (7)
C100.0364 (12)0.0279 (11)0.0399 (13)0.0081 (9)0.0042 (10)0.0105 (10)
C170.0255 (10)0.0184 (9)0.0312 (11)0.0003 (7)0.0099 (8)−0.0014 (8)
C180.0327 (11)0.0268 (10)0.0242 (10)−0.0010 (8)0.0075 (8)−0.0051 (8)
C160.0299 (10)0.0258 (10)0.0234 (10)0.0030 (8)0.0047 (8)0.0017 (8)
C20.0243 (9)0.0179 (9)0.0232 (9)0.0003 (7)0.0051 (7)−0.0014 (7)
C80.0201 (9)0.0205 (9)0.0255 (10)−0.0004 (7)0.0051 (7)0.0038 (7)
C190.0265 (10)0.0276 (10)0.0222 (10)−0.0007 (8)0.0031 (8)0.0004 (8)
C90.0309 (11)0.0253 (10)0.0251 (10)0.0009 (8)0.0027 (8)0.0052 (8)
C30.0235 (10)0.0200 (9)0.0336 (11)0.0025 (7)0.0046 (8)0.0010 (8)
C50.0292 (10)0.0181 (9)0.0223 (9)−0.0034 (8)0.0067 (8)−0.0016 (7)
C130.0303 (10)0.0253 (10)0.0230 (10)−0.0003 (8)0.0051 (8)0.0017 (8)
C110.0416 (13)0.0198 (10)0.0519 (14)0.0049 (9)0.0205 (11)0.0053 (10)
C120.0439 (13)0.0251 (10)0.0350 (12)−0.0047 (9)0.0168 (10)−0.0043 (9)

Geometric parameters (Å, °)

Cl1—C51.742 (2)C14—C191.386 (3)
S1—O21.4307 (15)C10—C91.379 (3)
S1—O31.4329 (15)C10—C111.381 (3)
S1—N11.6383 (17)C10—H100.950
S1—C141.7679 (19)C17—C161.381 (3)
Cl2—C171.7374 (19)C17—C181.386 (3)
O1—C71.223 (2)C18—C191.387 (3)
N1—C21.429 (2)C18—H180.950
N1—H10.865 (15)C16—H160.950
C4—C31.384 (3)C2—C31.392 (3)
C4—C51.385 (3)C8—C131.391 (3)
C4—H40.950C8—C91.394 (3)
C15—C161.386 (3)C19—H190.950
C15—C141.391 (3)C9—H90.950
C15—H150.950C3—H30.950
C7—C81.490 (3)C13—C121.391 (3)
C7—C11.499 (3)C13—H130.950
C6—C51.384 (3)C11—C121.384 (3)
C6—C11.393 (3)C11—H110.950
C6—H60.950C12—H120.950
C1—C21.404 (3)
O2—S1—O3120.89 (9)C17—C18—C19118.95 (18)
O2—S1—N1107.51 (9)C17—C18—H18120.5
O3—S1—N1104.68 (9)C19—C18—H18120.5
O2—S1—C14107.79 (9)C17—C16—C15118.98 (18)
O3—S1—C14108.11 (9)C17—C16—H16120.5
N1—S1—C14107.13 (9)C15—C16—H16120.5
C2—N1—S1121.25 (13)C3—C2—C1120.09 (18)
C2—N1—H1114.7 (15)C3—C2—N1118.44 (17)
S1—N1—H1110.0 (15)C1—C2—N1121.43 (17)
C3—C4—C5119.05 (18)C13—C8—C9119.28 (18)
C3—C4—H4120.5C13—C8—C7122.45 (17)
C5—C4—H4120.5C9—C8—C7118.12 (17)
C16—C15—C14119.66 (18)C14—C19—C18119.64 (18)
C16—C15—H15120.2C14—C19—H19120.2
C14—C15—H15120.2C18—C19—H19120.2
O1—C7—C8120.44 (17)C10—C9—C8120.21 (19)
O1—C7—C1120.10 (17)C10—C9—H9119.9
C8—C7—C1119.43 (16)C8—C9—H9119.9
C5—C6—C1119.39 (17)C4—C3—C2120.33 (18)
C5—C6—H6120.3C4—C3—H3119.8
C1—C6—H6120.3C2—C3—H3119.8
C6—C1—C2119.26 (17)C6—C5—C4121.67 (18)
C6—C1—C7120.47 (17)C6—C5—Cl1118.85 (15)
C2—C1—C7120.26 (17)C4—C5—Cl1119.48 (15)
C19—C14—C15120.85 (18)C12—C13—C8120.28 (19)
C19—C14—S1120.09 (15)C12—C13—H13119.9
C15—C14—S1119.06 (15)C8—C13—H13119.9
C9—C10—C11120.3 (2)C10—C11—C12120.3 (2)
C9—C10—H10119.9C10—C11—H11119.9
C11—C10—H10119.9C12—C11—H11119.9
C16—C17—C18121.92 (18)C11—C12—C13119.7 (2)
C16—C17—Cl2119.17 (15)C11—C12—H12120.2
C18—C17—Cl2118.92 (15)C13—C12—H12120.2
O2—S1—N1—C246.32 (17)C7—C1—C2—N1−6.2 (3)
O3—S1—N1—C2176.05 (14)S1—N1—C2—C3−78.1 (2)
C14—S1—N1—C2−69.30 (16)S1—N1—C2—C1104.42 (19)
C5—C6—C1—C21.4 (3)O1—C7—C8—C13−154.24 (19)
C5—C6—C1—C7−179.43 (17)C1—C7—C8—C1323.5 (3)
O1—C7—C1—C6−136.12 (19)O1—C7—C8—C921.4 (3)
C8—C7—C1—C646.2 (2)C1—C7—C8—C9−160.91 (17)
O1—C7—C1—C243.0 (3)C15—C14—C19—C180.0 (3)
C8—C7—C1—C2−134.72 (18)S1—C14—C19—C18−179.36 (15)
C16—C15—C14—C19−0.2 (3)C17—C18—C19—C140.6 (3)
C16—C15—C14—S1179.15 (15)C11—C10—C9—C81.5 (3)
O2—S1—C14—C19−13.39 (18)C13—C8—C9—C10−0.8 (3)
O3—S1—C14—C19−145.63 (16)C7—C8—C9—C10−176.61 (19)
N1—S1—C14—C19102.04 (17)C5—C4—C3—C20.9 (3)
O2—S1—C14—C15167.28 (15)C1—C2—C3—C43.3 (3)
O3—S1—C14—C1535.04 (18)N1—C2—C3—C4−174.15 (17)
N1—S1—C14—C15−77.28 (17)C1—C6—C5—C42.9 (3)
C16—C17—C18—C19−0.9 (3)C1—C6—C5—Cl1−178.11 (14)
Cl2—C17—C18—C19178.95 (15)C3—C4—C5—C6−4.0 (3)
C18—C17—C16—C150.7 (3)C3—C4—C5—Cl1176.93 (15)
Cl2—C17—C16—C15−179.17 (15)C9—C8—C13—C12−0.7 (3)
C14—C15—C16—C17−0.1 (3)C7—C8—C13—C12174.83 (18)
C6—C1—C2—C3−4.5 (3)C9—C10—C11—C12−0.5 (3)
C7—C1—C2—C3176.37 (17)C10—C11—C12—C13−1.1 (3)
C6—C1—C2—N1172.92 (17)C8—C13—C12—C111.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.865 (15)2.967 (19)3.6519 (17)137.5 (18)
N1—H1···O10.865 (15)2.20 (2)2.798 (2)126.1 (18)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2286).

References

  • Basak, A., Jin, J., Moore, J., Pennell, A. M. K., Punna, S., Ungashe, S. & Wei, Z. (2008). World Patent Application 2008008374.
  • Bruker (2004). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fleming, P., Harriman, G. C. B., Shi, Z. & Chen, S. (2003). World Patent Application 2003099773.
  • Kolehmainen, E., Nissinen, M., Janota, H., Gawinecki, R. & Ośmiałowski, B. (2003). Pol. J. Chem.77, 889–894.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sternbach, L. H., Fryer, R. I., Metlesics, W., Sach, G. & Stempel, A. (1962). J. Org. Chem.27, 3781–3788.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography