PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o703.
Published online 2008 March 12. doi:  10.1107/S1600536808006296
PMCID: PMC2961032

5-Fluoro-1-(3-metylbutano­yl)pyrimidine-2,4(1H,3H)-dione

Abstract

The 3-methyl­butanoyl group and the 5-fluoro­uracil unit of the title compound, C9H11FN2O3, are essentially coplanar, with the carbonyl group oriented towards the ring CH group and away from the nearer ring carbonyl group. The 3-methyl­butanoyl (C=)C—N—C=O torsion angle of 9.6 (2)° is comparable to that in structurally related compounds. In the solid state, two inversion-related mol­ecules form N—H(...)O hydrogen bonds to generate an inter­molecular R 2 2(8) ring. The crystal structure also diplays intra- and inter­molecular C—H(...)O inter­actions.

Related literature

For similar 5-fluoro­pyrimidine-2,4(1H,3H)-dione structures with N1-acyl substituents, see: Beall et al. (1993 [triangle]); Jiang et al. (1988 [triangle]); Lehmler & Parkin (2000 [triangle]); Lehmler & Parkin (2008 [triangle]). For related literature, see: Roberts & Sloan (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o703-scheme1.jpg

Experimental

Crystal data

  • C9H11FN2O3
  • M r = 214.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o703-efi1.jpg
  • a = 5.4879 (3) Å
  • b = 9.3702 (5) Å
  • c = 9.9794 (5) Å
  • α = 103.470 (2)°
  • β = 100.204 (3)°
  • γ = 104.085 (3)°
  • V = 468.94 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 90.0 (2) K
  • 0.30 × 0.20 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.963, T max = 0.991
  • 4080 measured reflections
  • 2139 independent reflections
  • 1629 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.112
  • S = 1.07
  • 2139 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and local procedures.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006296/om2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006296/om2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Despite their potential pharmaceutical application, the crystal structures of only five 1-acyl-5-fluorouracil derivatives have been described in the literature (Beall et al., 1993; Jiang et al., 1988; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008). We herein describe the crystal structure of a new 1-acyl-5-fluorouracil derivative, 5-fluoro-1-(1-oxo-3-methylbutyl)-2,4(1H,3H)-pyrimidinedione.

The molecular structures of 1-acyl-5-fluorouracil derivatives are similar. The 1-acyl group and the 5-fluorouracil moiety are essentially coplanar, with the C7=O7 carbonyl group oriented towards the C6—H group and away from the C2=O2 group. The C6—N1—C7—O7 dihedral angle of the title compound is 9.6 (2)°. The other 1-acyl-5-fluorouracil derivatives have comparable dihedral angles ranging from 1.6° to 17.3° (Beall et al., 1993; Jiang et al., 1988; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008), which suggests that the carbonyl group of the 1-acyl group and the pyrimidine-2,4(1H,3H)-dione moiety are conjugated. The differences in the dihedral angles are most likely due to packing effects in the crystal.

Similar to the crystal structure of other 1-acyl-5-fluorouracil derivatives (Beall et al., 1993; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008), the crystal structure of the title compound contains inversion related molecules that form dimers in which two N—H···O hydrogen bonds generate an intermolecular R22(8) ring. Furthermore, there are C—H···O type intra and intermolecular interactions.

Experimental

5-Fluoro-1-(1-oxo-3-methylbutyl)-2,4(1H,3H)-pyrimidinedione was synthesized by acylation of 5-fluorouracil with 3-methyl-butanoyl chloride and recrystallized from diethylether at -20°C (Beall et al., 1997; Lehmler & Parkin, 2000; Roberts & Sloan, 1999).

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 0.95 Å (CArH) and 0.88 Å (NH) with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Figures

Fig. 1.
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C9H11FN2O3Z = 2
Mr = 214.20F000 = 224
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.4879 (3) ÅCell parameters from 4363 reflections
b = 9.3702 (5) Åθ = 1.0–27.5º
c = 9.9794 (5) ŵ = 0.13 mm1
α = 103.470 (2)ºT = 90.0 (2) K
β = 100.204 (3)ºIrregular block, colourless
γ = 104.085 (3)º0.30 × 0.20 × 0.07 mm
V = 468.94 (4) Å3

Data collection

Nonius KappaCCD diffractometer2139 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
Detector resolution: 18 pixels mm-1θmax = 27.5º
T = 88.0(2) Kθmin = 2.2º
ω scans at fixed χ = 55°h = −7→7
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997)k = −12→12
Tmin = 0.963, Tmax = 0.991l = −12→12
4080 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0498P)2 + 0.0466P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2139 reflectionsΔρmax = 0.27 e Å3
138 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.0774 (2)0.62396 (13)0.89316 (12)0.0141 (3)
O2−0.2469 (2)0.74248 (12)0.89048 (11)0.0206 (3)
C2−0.1490 (3)0.65330 (17)0.82969 (16)0.0152 (3)
N3−0.2565 (2)0.56922 (13)0.68799 (12)0.0153 (3)
H3−0.39060.59110.64440.018*
O4−0.2928 (2)0.38819 (11)0.48195 (10)0.0189 (3)
C4−0.1798 (3)0.45604 (16)0.60712 (15)0.0157 (4)
F50.13171 (17)0.31908 (10)0.61287 (9)0.0218 (3)
C50.0440 (3)0.42855 (17)0.68495 (16)0.0155 (3)
C60.1651 (3)0.50812 (16)0.81867 (15)0.0152 (3)
H60.31300.48640.86460.018*
O70.3841 (2)0.64683 (11)1.08882 (11)0.0195 (3)
C70.2244 (3)0.70161 (17)1.03933 (15)0.0157 (4)
C80.1692 (3)0.84157 (17)1.12009 (15)0.0168 (4)
H8A0.00150.80991.14500.020*
H8B0.15340.90941.05840.020*
C90.3816 (3)0.93148 (18)1.25622 (16)0.0210 (4)
H90.43640.85641.30220.025*
C100.6162 (3)1.02656 (19)1.22141 (19)0.0308 (4)
H10A0.56571.10101.17650.046*
H10B0.68170.95861.15610.046*
H10C0.75221.08131.30920.046*
C110.2765 (3)1.03360 (19)1.35944 (16)0.0255 (4)
H11A0.41551.09361.44470.038*
H11B0.13490.96931.38640.038*
H11C0.21151.10341.31360.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0142 (7)0.0140 (6)0.0140 (7)0.0062 (5)0.0024 (5)0.0027 (5)
O20.0191 (6)0.0240 (6)0.0184 (6)0.0123 (5)0.0021 (5)0.0017 (5)
C20.0138 (8)0.0165 (8)0.0143 (8)0.0023 (6)0.0027 (6)0.0055 (6)
N30.0128 (7)0.0175 (7)0.0154 (7)0.0073 (6)−0.0001 (5)0.0043 (5)
O40.0185 (6)0.0183 (6)0.0160 (6)0.0043 (5)0.0004 (5)0.0019 (5)
C40.0162 (9)0.0131 (8)0.0162 (8)0.0023 (6)0.0028 (6)0.0045 (6)
F50.0236 (6)0.0210 (5)0.0199 (5)0.0121 (4)0.0036 (4)−0.0002 (4)
C50.0170 (8)0.0136 (7)0.0181 (8)0.0076 (6)0.0066 (6)0.0036 (6)
C60.0148 (8)0.0154 (8)0.0174 (8)0.0069 (6)0.0036 (6)0.0062 (6)
O70.0201 (6)0.0225 (6)0.0169 (6)0.0108 (5)0.0010 (5)0.0059 (5)
C70.0148 (9)0.0172 (8)0.0146 (8)0.0027 (7)0.0030 (6)0.0064 (6)
C80.0180 (9)0.0174 (8)0.0159 (8)0.0075 (7)0.0027 (6)0.0049 (6)
C90.0219 (9)0.0193 (8)0.0197 (9)0.0101 (7)−0.0027 (7)0.0032 (7)
C100.0203 (10)0.0263 (10)0.0366 (11)0.0061 (8)0.0008 (8)−0.0029 (8)
C110.0306 (10)0.0217 (9)0.0194 (9)0.0073 (8)0.0002 (7)0.0018 (7)

Geometric parameters (Å, °)

N1—C61.4026 (18)C7—C81.499 (2)
N1—C21.4102 (19)C8—C91.530 (2)
N1—C71.4529 (18)C8—H8A0.9900
O2—C21.2053 (17)C8—H8B0.9900
C2—N31.3884 (18)C9—C101.522 (2)
N3—C41.3755 (19)C9—C111.526 (2)
N3—H30.8800C9—H91.0000
O4—C41.2300 (17)C10—H10A0.9800
C4—C51.445 (2)C10—H10B0.9800
F5—C51.3493 (16)C10—H10C0.9800
C5—C61.326 (2)C11—H11A0.9800
C6—H60.9500C11—H11B0.9800
O7—C71.2079 (17)C11—H11C0.9800
C6—N1—C2120.64 (12)C9—C8—H8A109.1
C6—N1—C7115.63 (12)C7—C8—H8B109.1
C2—N1—C7123.62 (12)C9—C8—H8B109.1
O2—C2—N3121.20 (14)H8A—C8—H8B107.9
O2—C2—N1124.36 (13)C10—C9—C11110.92 (13)
N3—C2—N1114.44 (13)C10—C9—C8110.36 (13)
C4—N3—C2128.19 (13)C11—C9—C8110.06 (13)
C4—N3—H3115.9C10—C9—H9108.5
C2—N3—H3115.9C11—C9—H9108.5
O4—C4—N3122.26 (14)C8—C9—H9108.5
O4—C4—C5125.01 (14)C9—C10—H10A109.5
N3—C4—C5112.73 (13)C9—C10—H10B109.5
C6—C5—F5120.63 (13)H10A—C10—H10B109.5
C6—C5—C4122.96 (14)C9—C10—H10C109.5
F5—C5—C4116.38 (12)H10A—C10—H10C109.5
C5—C6—N1120.82 (14)H10B—C10—H10C109.5
C5—C6—H6119.6C9—C11—H11A109.5
N1—C6—H6119.6C9—C11—H11B109.5
O7—C7—N1116.87 (13)H11A—C11—H11B109.5
O7—C7—C8123.93 (13)C9—C11—H11C109.5
N1—C7—C8119.20 (12)H11A—C11—H11C109.5
C7—C8—C9112.30 (13)H11B—C11—H11C109.5
C7—C8—H8A109.1
C6—N1—C2—O2174.10 (14)F5—C5—C6—N1178.82 (12)
C7—N1—C2—O2−1.8 (2)C4—C5—C6—N10.9 (2)
C6—N1—C2—N3−5.5 (2)C2—N1—C6—C53.1 (2)
C7—N1—C2—N3178.58 (12)C7—N1—C6—C5179.32 (13)
O2—C2—N3—C4−174.94 (14)C6—N1—C7—O7−9.6 (2)
N1—C2—N3—C44.7 (2)C2—N1—C7—O7166.53 (13)
C2—N3—C4—O4179.30 (13)C6—N1—C7—C8171.17 (12)
C2—N3—C4—C5−1.1 (2)C2—N1—C7—C8−12.7 (2)
O4—C4—C5—C6177.69 (15)O7—C7—C8—C915.1 (2)
N3—C4—C5—C6−1.9 (2)N1—C7—C8—C9−165.67 (13)
O4—C4—C5—F5−0.3 (2)C7—C8—C9—C1078.01 (16)
N3—C4—C5—F5−179.92 (12)C7—C8—C9—C11−159.23 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.882.042.9091 (16)171

Symmetry codes: (i) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2217).

References

  • Beall, H. D., Prankerd, R. J. & Sloan, K. B. (1993). Drug Dev. Ind. Pharm.23, 517–525.
  • Jiang, A., Hu, S., Wang, Y. & Chen, Q. (1988). Gaodeng Xuexiao Huaxue Xuebao, 9, 307–309.
  • Lehmler, H.-J. & Parkin, S. (2000). Acta Cryst. C56, e518–519.
  • Lehmler, H.-J. & Parkin, S. (2008). Acta Cryst. E64, o617. [PMC free article] [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Roberts, W. J. & Sloan, K. B. (1999). J. Pharm. Sci.88, 515–522. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography