PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o765–o766.
Published online 2008 March 29. doi:  10.1107/S1600536808008106
PMCID: PMC2961030

4,4′-[Thio­phene-2,5-diylbis(ethyne-2,1-di­yl)]dibenzonitrile

Abstract

In the solid state, the title compound, C22H10N2S, forms centrosymmetric dimers by pairs of non-classical C—H(...)S hydrogen bonds linking approximately coplanar mol­ecules. The benzene ring involved in this inter­action makes a dihedral angle of only 7.21 (16)° with the thio­phene ring, while the other benzene ring is twisted somewhat out of the plane, with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an inter­planar spacing of 3.44 Å. C—H(...)N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each mol­ecule thus inter­acts with 12 adjacent mol­ecules, five of them approaching closer than the sum of the van der Waals radii for the relevant atoms. Optimization of the inter-stack contacts contributes to the non-planarity of the mol­ecule.

Related literature

For related literature, see: Rodríguez et al. (2004 [triangle], 2006 [triangle]); Lind et al. (2004 [triangle]); Garcia et al. (2001 [triangle]); Ornelas et al. (2005 [triangle], 2008 [triangle]); Tour (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o765-scheme1.jpg

Experimental

Crystal data

  • C22H10N2S
  • M r = 334.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o765-efi1.jpg
  • a = 5.4557 (11) Å
  • b = 19.467 (4) Å
  • c = 15.592 (3) Å
  • β = 91.89 (3)°
  • V = 1655.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 173 (2) K
  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 19547 measured reflections
  • 2906 independent reflections
  • 1762 reflections with I > 2σ(I)
  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.107
  • S = 1.01
  • 2906 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808008106/cf2187sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008106/cf2187Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Fundação para a Ciência e a Tecnologia (Portugal) through FEDER-funded project POCTI/CTM/41495/2001 (JF and JR), the PhD grant SFRH/BD/29325/2006 (JF) and by the sabbatical research grant SFRH/BSAB/632/2006 (JR). JR and JF thank the University of Jyväskylä for supporting their visits, respectively, as a visiting professor and as a PhD student at the Nanoscience Center, Department of Chemistry. The Academy of Finland is gratefully acknowledged for a research grant (No. 122350, KR).

supplementary crystallographic information

Comment

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl; Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

In the solid state the title compound, C22H10N2S, forms centrosymmetric dimers by pairs of non-classical C—H···S hydrogen bonds linking approximately coplanar molecules. The benzene ring involved in this interaction makes a dihedral angle of only 7.21 (16)° with the thiophene ring, while the other benzene ring is twisted somewhat out of plane with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an interplanar spacing of 3.44 Å. C—H···N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each molecule thus interacts with twelve ajacent molecules, five of them approaching closer than the sum of van der Waals radii for the relevant atoms. Optimisation of the inter-stack contacts contributes to the non-planarity of the molecule.

Experimental

The title compound was prepared by Sonogashira cross-coupling (Rodríguez et al., 2004, 2006) of 4-ethynylbenzonitrile (0.901 g, 7.09 mmol) and 2,5-dibromothiophene (0.800 g, 3.30 mmol) in dry tetrahydrofuran (16 ml) and N-ethyldiisopropylamine (25 ml). The reaction was catalysed by PdCl2(PPh3)2 (0.250 g, 0.360 mmol) and CuI (0.068 g, 0.36 mmol). The mixture was left under N2 atmosphere at room temperature for 17 h and then heated for 2. 5 h at 333–343 K. The resulting reaction mixture was washed with aqueous NH4Cl and extracted (3 times) with CH2Cl2. The resulting solution was dried over Na2SO4 and evaporated to dryness. The resulting dark solid was column chromatographed (Silica S60, petroleum ether/CH2Cl2 2:2.5), yielding a pale yellow solid. Slow evaporation of a CH2Cl2 solution of the title compound resulted in yellow crystals in 41% yield. 1H NMR (500 MHz, CD2Cl2): δ 7.28 (2H, s, Ar); 7.62 (4H, d, Ar, JHH = 9 Hz); 7.67 (4H, d, Ar, JHH = 9 Hz); 13C NMR (126 MHz, CD2Cl2): δ 86.5, 93.4, 112.7, 118.9, 125.2, 127.8, 132.4, 132.8, 133.6, 133.7; IR (KBr): 2227 (m), 2207 (m), 1663 (w), 1600 (s), 1490 (w),1385 (s), 1110 (w), 865 (s), 839 (s), 802 (m), 555 (m), 536 (w) cm-1; Mp: decomposes above 393 K.

Refinement

The H atoms were visible in electron density maps, but were placed in idealized positions and allowed to ride on their parent atoms at distances of 0.95 Å (aromatic and acetylinic), 0.98 Å (methyl) and 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids.
Fig. 2.
The packing of (I), viewed along the b axis.
Fig. 3.
An alternate view of the packing of (I), showing the close C—H···N contacts (less that 0.1 Å + sum of vDW radii).

Crystal data

C22H10N2SF000 = 688
Mr = 334.38Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5465 reflections
a = 5.4557 (11) Åθ = 1.0–25.0º
b = 19.467 (4) ŵ = 0.20 mm1
c = 15.592 (3) ÅT = 173 (2) K
β = 91.89 (3)ºBlock, colourless
V = 1655.1 (6) Å30.3 × 0.2 × 0.2 mm
Z = 4

Data collection

Nonius KappaCCD diffractometerRint = 0.103
ω and [var phi] scansθmax = 25.0º
Absorption correction: noneθmin = 3.4º
19547 measured reflectionsh = −6→6
2906 independent reflectionsk = −23→23
1762 reflections with I > 2σ(I)l = −18→18

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1608P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max = 0.001
wR(F2) = 0.107Δρmax = 0.18 e Å3
S = 1.01Δρmin = −0.23 e Å3
2906 reflectionsExtinction correction: none
226 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C2−1.0858 (5)1.19052 (14)0.88637 (18)0.0381 (7)
C3−0.9079 (4)1.13708 (12)0.87250 (18)0.0321 (7)
C4−0.7199 (4)1.12636 (12)0.93351 (18)0.0350 (7)
H4−0.70621.15480.98290.042*
C5−0.5532 (4)1.07398 (13)0.92173 (17)0.0338 (7)
H5−0.4261.0660.96360.041*
C6−0.5711 (4)1.03261 (12)0.84841 (17)0.0300 (6)
C7−0.7592 (4)1.04450 (12)0.78771 (17)0.0341 (7)
H7−0.77161.01670.73760.041*
C8−0.9275 (4)1.09612 (13)0.79951 (18)0.0371 (7)
H8−1.05611.10370.7580.044*
C9−0.3976 (4)0.97811 (13)0.83651 (16)0.0328 (7)
C10−0.2514 (4)0.93344 (12)0.82613 (17)0.0318 (6)
C11−0.0771 (4)0.88054 (12)0.81401 (17)0.0302 (6)
C130.2619 (4)0.79650 (12)0.83234 (17)0.0313 (6)
C140.1422 (4)0.79222 (13)0.75409 (17)0.0395 (7)
H140.18510.76040.7110.047*
C15−0.0503 (5)0.83959 (13)0.74389 (18)0.0388 (7)
H15−0.15170.84280.69330.047*
C160.4557 (5)0.75490 (13)0.86692 (17)0.0342 (7)
C170.6095 (4)0.71891 (13)0.89930 (17)0.0329 (7)
C180.7787 (4)0.67373 (12)0.94359 (17)0.0303 (6)
C190.9777 (4)0.64472 (12)0.90311 (17)0.0332 (7)
H191.00490.65530.84470.04*
C201.1351 (4)0.60097 (13)0.94690 (17)0.0339 (7)
H201.27170.58190.9190.041*
C211.0941 (4)0.58472 (12)1.03170 (18)0.0298 (6)
C220.8960 (4)0.61295 (13)1.07333 (18)0.0346 (7)
H220.86820.60161.13150.041*
C230.7403 (4)0.65760 (12)1.02936 (18)0.0352 (7)
H230.6060.67751.05770.042*
C241.2582 (5)0.53837 (13)1.07783 (17)0.0330 (7)
N1−1.2285 (4)1.23260 (12)0.89832 (16)0.0495 (7)
N251.3868 (4)0.50197 (11)1.11512 (15)0.0434 (6)
S120.13508 (11)0.85961 (3)0.89414 (5)0.0369 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0375 (16)0.0321 (17)0.045 (2)−0.0017 (13)0.0037 (14)0.0089 (14)
C30.0283 (14)0.0245 (14)0.0436 (19)0.0030 (12)0.0046 (13)0.0035 (14)
C40.0353 (15)0.0327 (16)0.0373 (18)0.0024 (12)0.0045 (13)−0.0046 (13)
C50.0295 (14)0.0381 (16)0.0332 (18)−0.0002 (12)−0.0059 (13)−0.0021 (14)
C60.0286 (14)0.0263 (15)0.0352 (18)−0.0019 (12)0.0043 (12)0.0030 (13)
C70.0371 (15)0.0335 (16)0.0315 (18)0.0001 (13)−0.0008 (13)−0.0010 (13)
C80.0328 (15)0.0383 (17)0.040 (2)0.0002 (13)−0.0031 (13)0.0054 (15)
C90.0314 (15)0.0358 (16)0.0313 (18)−0.0013 (13)0.0019 (12)0.0007 (13)
C100.0332 (15)0.0312 (16)0.0310 (17)−0.0008 (13)0.0029 (12)−0.0005 (13)
C110.0296 (14)0.0265 (14)0.0347 (18)0.0017 (11)0.0027 (12)0.0045 (13)
C130.0303 (14)0.0275 (15)0.0363 (18)0.0030 (12)0.0043 (12)0.0054 (13)
C140.0504 (17)0.0369 (17)0.0312 (19)0.0158 (14)0.0024 (14)0.0009 (14)
C150.0492 (17)0.0386 (17)0.0285 (18)0.0105 (14)−0.0014 (13)0.0016 (14)
C160.0343 (15)0.0315 (16)0.0369 (18)−0.0015 (13)0.0047 (13)−0.0001 (14)
C170.0315 (15)0.0305 (15)0.0367 (18)−0.0017 (13)0.0018 (13)−0.0007 (13)
C180.0304 (15)0.0245 (14)0.0360 (18)−0.0026 (12)−0.0010 (13)−0.0010 (13)
C190.0339 (15)0.0325 (16)0.0333 (17)−0.0018 (13)0.0036 (13)0.0032 (13)
C200.0301 (15)0.0325 (16)0.039 (2)0.0028 (12)0.0033 (13)−0.0019 (14)
C210.0272 (14)0.0254 (15)0.0366 (19)−0.0016 (11)−0.0047 (12)0.0008 (13)
C220.0340 (15)0.0388 (16)0.0308 (17)0.0011 (13)−0.0001 (13)−0.0001 (13)
C230.0291 (14)0.0361 (17)0.0405 (19)0.0032 (12)0.0014 (13)−0.0037 (14)
C240.0324 (15)0.0314 (16)0.0350 (18)0.0016 (13)−0.0026 (13)−0.0064 (14)
N10.0471 (15)0.0394 (15)0.0626 (19)0.0092 (12)0.0082 (13)0.0070 (13)
N250.0435 (14)0.0459 (15)0.0405 (16)0.0087 (12)−0.0057 (12)−0.0037 (12)
S120.0353 (4)0.0392 (4)0.0360 (5)0.0052 (3)−0.0028 (3)−0.0052 (3)

Geometric parameters (Å, °)

C2—N11.149 (3)C13—S121.721 (3)
C2—C31.444 (4)C14—C151.403 (3)
C3—C81.391 (4)C14—H140.95
C3—C41.392 (4)C15—H150.95
C4—C51.383 (3)C16—C171.192 (3)
C4—H40.95C17—C181.436 (3)
C5—C61.399 (3)C18—C191.393 (3)
C5—H50.95C18—C231.396 (3)
C6—C71.392 (3)C19—C201.375 (3)
C6—C91.438 (3)C19—H190.95
C7—C81.378 (3)C20—C211.385 (3)
C7—H70.95C20—H200.95
C8—H80.95C21—C221.392 (3)
C9—C101.195 (3)C21—C241.446 (4)
C10—C111.418 (3)C22—C231.382 (3)
C11—C151.365 (3)C22—H220.95
C11—S121.724 (3)C23—H230.95
C13—C141.367 (3)C24—N251.143 (3)
C13—C161.424 (4)
N1—C2—C3179.1 (3)C13—C14—H14123.4
C8—C3—C4120.6 (2)C15—C14—H14123.4
C8—C3—C2120.1 (2)C11—C15—C14113.1 (2)
C4—C3—C2119.3 (2)C11—C15—H15123.4
C5—C4—C3119.5 (2)C14—C15—H15123.4
C5—C4—H4120.2C17—C16—C13176.4 (3)
C3—C4—H4120.2C16—C17—C18174.9 (3)
C4—C5—C6120.3 (2)C19—C18—C23119.1 (2)
C4—C5—H5119.8C19—C18—C17121.9 (2)
C6—C5—H5119.8C23—C18—C17118.9 (2)
C7—C6—C5119.3 (2)C20—C19—C18120.6 (2)
C7—C6—C9120.6 (2)C20—C19—H19119.7
C5—C6—C9120.1 (2)C18—C19—H19119.7
C8—C7—C6120.7 (2)C19—C20—C21119.8 (2)
C8—C7—H7119.7C19—C20—H20120.1
C6—C7—H7119.7C21—C20—H20120.1
C7—C8—C3119.6 (2)C20—C21—C22120.5 (2)
C7—C8—H8120.2C20—C21—C24120.1 (2)
C3—C8—H8120.2C22—C21—C24119.5 (2)
C10—C9—C6179.1 (3)C23—C22—C21119.4 (3)
C9—C10—C11179.8 (3)C23—C22—H22120.3
C15—C11—C10128.4 (2)C21—C22—H22120.3
C15—C11—S12110.82 (18)C22—C23—C18120.5 (2)
C10—C11—S12120.8 (2)C22—C23—H23119.8
C14—C13—C16129.1 (2)C18—C23—H23119.8
C14—C13—S12110.75 (18)N25—C24—C21179.2 (3)
C16—C13—S12120.1 (2)C13—S12—C1192.05 (12)
C13—C14—C15113.3 (2)
C8—C3—C4—C5−0.8 (4)C23—C18—C19—C20−0.2 (4)
C2—C3—C4—C5178.2 (2)C17—C18—C19—C20−179.2 (2)
C3—C4—C5—C60.9 (4)C18—C19—C20—C210.9 (4)
C4—C5—C6—C7−0.4 (4)C19—C20—C21—C22−0.7 (4)
C4—C5—C6—C9−179.9 (2)C19—C20—C21—C24179.6 (2)
C5—C6—C7—C8−0.4 (4)C20—C21—C22—C23−0.2 (4)
C9—C6—C7—C8179.2 (2)C24—C21—C22—C23179.6 (2)
C6—C7—C8—C30.5 (4)C21—C22—C23—C180.8 (4)
C4—C3—C8—C70.0 (4)C19—C18—C23—C22−0.6 (4)
C2—C3—C8—C7−178.9 (2)C17—C18—C23—C22178.4 (2)
C16—C13—C14—C15176.4 (2)C14—C13—S12—C11−0.5 (2)
S12—C13—C14—C150.1 (3)C16—C13—S12—C11−177.2 (2)
C10—C11—C15—C14−179.9 (2)C15—C11—S12—C130.8 (2)
S12—C11—C15—C14−0.8 (3)C10—C11—S12—C13179.9 (2)
C13—C14—C15—C110.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.952.653.246 (4)121
C7—H7···N25ii0.952.653.384 (4)134
C20—H20···N25iii0.952.553.453 (3)159
C5—H5···S12iv0.953.053.832 (3)141

Symmetry codes: (i) −x−3/2, y−1/2, −z+3/2; (ii) x−5/2, −y+3/2, z−1/2; (iii) −x+3, −y+1, −z+2; (iv) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2187).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem.632, 133–144.
  • Hooft, R. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lind, P., Lopes, C., Öberg, K. & Eliasson, B. (2004). Chem. Phys. Lett.387, 238–242.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Nättinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.
  • Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem In the press, doi:10.1021/ic800100k.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rodríguez, J. G., Lafuente, A., Rubio, L. & Esquivias, J. (2004). Tetrahedron Lett.45, 7061–7064.
  • Rodríguez, J. G., Lafuente, A., Rubio, L. & Rubio, L. (2006). Tetrahedron, 62, 3112–3122.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming Singapore: World ScientificPublishing Co. Pte. Ltd.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography