PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o705.
Published online 2008 March 12. doi:  10.1107/S1600536808006430
PMCID: PMC2961029

N-(2-Chloro-4-nitro­phen­yl)-2-nitro­benzamide

Abstract

In the title compound, C13H8ClN3O5, the dihedral angle between the two aromatic rings is 70.74 (6)°. The nitro groups of the Cl-substituted and benzamide benzene rings are twisted by 2.6 (1) and 31.3 (2)°, respectively. The crystal packing shows inter­molecular C—H(...)O hydrogen bonds that link mol­ecules into sheets stacked along [010].

Related literature

For the biological activities of benzanilides and related compounds, see: Makino et al. (2003 [triangle]); Ho et al. (2002 [triangle]); Zhichkin et al. (2007 [triangle]); Jackson et al. (1994 [triangle]); Capdeville et al. (2002 [triangle]); Igawa et al. (1999 [triangle]). For related structures, see: Di Rienzo et al. (1980 [triangle]); Batsanov & Lyubchik (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o705-scheme1.jpg

Experimental

Crystal data

  • C13H8ClN3O5
  • M r = 321.67
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o705-efi1.jpg
  • a = 7.8053 (9) Å
  • b = 13.8621 (17) Å
  • c = 24.101 (3) Å
  • V = 2607.7 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 120 (2) K
  • 0.47 × 0.20 × 0.14 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.863, T max = 0.956
  • 21562 measured reflections
  • 3111 independent reflections
  • 2424 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.107
  • S = 1.04
  • 3111 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006430/si2073sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006430/si2073Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-i-Azam University, Islamabad.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 2002), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002).Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999) The literature is full of the function of the 2-chloro-4-nitrophenyl group (CNP) and also structures of nitrobenzamide (NB) and related compounds (Di Rienzo et al., 1980; Batsanov & Lyubchik, 2003). The aim of the present work was to combine CNP and NB in a single structure which is not well known in the literature.

Geometric parameters of the title compound, C13H8ClN3O5, are in the usual ranges. The dihedral angle between the two aromatic rings is 70.74 (6)°. The N2 nitro group is twisted by 31.3 (2)° from the plane of the C2–C7 phenyl ring, and the N3 group 2.6 (2)° from the C8–C13 plane, respectively. The crystal packing shows intermolecular C–H···O hydrogen bonds, from the Cl-phenyl group to both nitro groups. Details are depicted in Table 1. By these hydrogen bonds molecules are linked to endless sheets that are stacked along [010]. Additionally, stacking of molecules along [100] can be recognized. The intramolecular C13–H13A···O1 interaction is a common feature for this molecule with an almost planar O1–C1–N1–C8–C13 arrangement. The corresponding torsion angles are C8–N1–C1–O1 6.7 (3)° and C1–N1–C8–C13 - 7.6 (3)°, respectively.

Experimental

2-Nitrobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-chloro-4-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm-1; 1H NMR (CDCl3, 400 MHz) ? 8.13 (d, J) 8 Hz, 1H), 7.81 (d, J) 8 Hz, 1H), 7.51 (dd, J) 8 Hz, 1H), 7.66 (dd, J) 8 Hz, 1H), 7.43 (d, J) 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J) 8 Hz, 1H); 13 C NMR (100 MHz) ? 164.7, 147.8, 134.6, 134.4, 132.7, 132.1, 130.3, 129.9, 129.3, 125.0. Anal. Calcd. For C13H9N3O5, C, 48.54; H, 2.51; Cl, 11.02; N, 13.06 found C, 48.12; H, 2.31; Cl, 11.3; N, 12.94.

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C13H8ClN3O5F000 = 1312
Mr = 321.67Dx = 1.639 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 769 reflections
a = 7.8053 (9) Åθ = 2.9–25.7º
b = 13.8621 (17) ŵ = 0.32 mm1
c = 24.101 (3) ÅT = 120 (2) K
V = 2607.7 (5) Å3Prism, colourless
Z = 80.47 × 0.20 × 0.14 mm

Data collection

Bruker SMART APEX diffractometer3111 independent reflections
Radiation source: sealed tube2424 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 120(2) Kθmax = 27.9º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −10→10
Tmin = 0.863, Tmax = 0.956k = −18→16
21562 measured reflectionsl = −31→31

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7975P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3111 reflectionsΔρmax = 0.39 e Å3
199 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.13944 (6)0.38512 (3)0.446787 (18)0.02271 (13)
O10.49413 (17)0.41462 (11)0.39481 (5)0.0317 (3)
O20.6129 (2)0.24007 (10)0.33719 (6)0.0374 (4)
O30.4575 (2)0.23191 (11)0.26277 (7)0.0428 (4)
O40.38629 (18)0.37084 (12)0.57016 (6)0.0388 (4)
O50.54709 (19)0.33143 (11)0.63925 (5)0.0345 (4)
N10.7841 (2)0.41233 (11)0.40825 (6)0.0221 (3)
H1A0.88160.42220.39080.027*
N20.5594 (2)0.27328 (11)0.29309 (7)0.0269 (4)
N30.5267 (2)0.35472 (11)0.59071 (6)0.0229 (3)
C10.6395 (2)0.41795 (13)0.37682 (7)0.0208 (4)
C20.6749 (2)0.43395 (13)0.31581 (7)0.0191 (4)
C30.7458 (2)0.52025 (13)0.29780 (7)0.0226 (4)
H3A0.77970.56750.32420.027*
C40.7676 (3)0.53806 (14)0.24147 (7)0.0253 (4)
H4A0.81790.59690.22960.030*
C50.7163 (3)0.47032 (14)0.20255 (7)0.0254 (4)
H5A0.73100.48310.16410.030*
C60.6437 (2)0.38416 (14)0.21950 (7)0.0237 (4)
H6A0.60730.33760.19310.028*
C70.6253 (2)0.36732 (13)0.27579 (7)0.0200 (4)
C80.7961 (2)0.39263 (12)0.46521 (7)0.0190 (4)
C90.9581 (2)0.37737 (12)0.48863 (7)0.0196 (4)
C100.9792 (2)0.35510 (13)0.54414 (7)0.0216 (4)
H10A1.09070.34430.55870.026*
C110.8378 (2)0.34852 (13)0.57846 (7)0.0211 (4)
H11A0.84970.33380.61680.025*
C120.6785 (2)0.36410 (12)0.55510 (7)0.0192 (4)
C130.6534 (2)0.38633 (12)0.49987 (7)0.0194 (4)
H13A0.54140.39710.48580.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0156 (2)0.0279 (2)0.0246 (2)0.00115 (17)0.00315 (15)0.00015 (17)
O10.0189 (7)0.0559 (10)0.0203 (6)0.0026 (7)0.0019 (5)0.0048 (6)
O20.0461 (10)0.0290 (8)0.0371 (8)−0.0004 (7)0.0064 (7)0.0124 (6)
O30.0422 (10)0.0316 (8)0.0545 (10)−0.0107 (7)−0.0013 (8)−0.0119 (7)
O40.0163 (7)0.0739 (12)0.0262 (7)−0.0008 (7)−0.0005 (6)0.0062 (7)
O50.0305 (8)0.0551 (10)0.0178 (6)0.0020 (7)0.0025 (5)0.0071 (6)
N10.0153 (8)0.0339 (9)0.0172 (7)0.0003 (7)0.0018 (6)0.0034 (6)
N20.0255 (9)0.0226 (8)0.0325 (9)0.0008 (7)0.0081 (7)−0.0029 (7)
N30.0203 (8)0.0300 (9)0.0182 (7)−0.0007 (7)0.0008 (6)−0.0010 (6)
C10.0205 (9)0.0234 (9)0.0186 (8)0.0022 (7)0.0016 (7)0.0004 (7)
C20.0138 (9)0.0243 (9)0.0191 (8)0.0035 (7)0.0011 (6)0.0020 (7)
C30.0195 (10)0.0239 (9)0.0245 (9)0.0002 (8)0.0013 (7)−0.0004 (7)
C40.0238 (10)0.0243 (9)0.0278 (9)0.0030 (8)0.0062 (8)0.0069 (8)
C50.0252 (10)0.0331 (11)0.0178 (8)0.0079 (8)0.0043 (7)0.0052 (8)
C60.0237 (10)0.0276 (10)0.0197 (8)0.0048 (8)−0.0005 (7)−0.0048 (7)
C70.0162 (9)0.0212 (9)0.0226 (9)0.0026 (7)0.0028 (7)0.0002 (7)
C80.0182 (9)0.0197 (9)0.0191 (8)0.0001 (7)−0.0012 (7)0.0003 (7)
C90.0162 (9)0.0172 (9)0.0254 (9)0.0003 (7)0.0029 (7)−0.0016 (7)
C100.0164 (9)0.0249 (10)0.0236 (9)0.0019 (7)−0.0038 (7)0.0003 (7)
C110.0217 (9)0.0230 (9)0.0187 (8)0.0008 (8)−0.0030 (7)0.0015 (7)
C120.0196 (9)0.0186 (8)0.0192 (8)−0.0008 (7)0.0018 (7)−0.0015 (7)
C130.0153 (9)0.0238 (9)0.0191 (8)−0.0009 (7)−0.0012 (6)−0.0010 (7)

Geometric parameters (Å, °)

Cl1—C91.7411 (18)C4—C51.386 (3)
O1—C11.216 (2)C4—H4A0.9500
O2—N21.231 (2)C5—C61.383 (3)
O3—N21.223 (2)C5—H5A0.9500
O4—N31.223 (2)C6—C71.384 (2)
O5—N31.2240 (19)C6—H6A0.9500
N1—C11.362 (2)C8—C131.395 (2)
N1—C81.403 (2)C8—C91.401 (2)
N1—H1A0.8800C9—C101.383 (2)
N2—C71.462 (2)C10—C111.383 (3)
N3—C121.469 (2)C10—H10A0.9500
C1—C21.512 (2)C11—C121.381 (3)
C2—C31.388 (3)C11—H11A0.9500
C2—C71.391 (3)C12—C131.380 (2)
C3—C41.390 (2)C13—H13A0.9500
C3—H3A0.9500
C1—N1—C8127.64 (15)C5—C6—C7118.53 (17)
C1—N1—H1A116.2C5—C6—H6A120.7
C8—N1—H1A116.2C7—C6—H6A120.7
O3—N2—O2124.13 (17)C6—C7—C2122.60 (17)
O3—N2—C7118.45 (16)C6—C7—N2117.81 (16)
O2—N2—C7117.41 (16)C2—C7—N2119.51 (16)
O4—N3—O5123.50 (16)C13—C8—C9118.04 (16)
O4—N3—C12118.03 (14)C13—C8—N1123.03 (16)
O5—N3—C12118.46 (15)C9—C8—N1118.92 (16)
O1—C1—N1124.98 (16)C10—C9—C8122.07 (16)
O1—C1—C2121.51 (16)C10—C9—Cl1118.51 (14)
N1—C1—C2113.45 (15)C8—C9—Cl1119.41 (13)
C3—C2—C7117.83 (16)C11—C10—C9119.91 (17)
C3—C2—C1120.22 (16)C11—C10—H10A120.0
C7—C2—C1121.73 (16)C9—C10—H10A120.0
C2—C3—C4120.48 (17)C12—C11—C10117.65 (16)
C2—C3—H3A119.8C12—C11—H11A121.2
C4—C3—H3A119.8C10—C11—H11A121.2
C5—C4—C3120.34 (17)C13—C12—C11123.77 (17)
C5—C4—H4A119.8C13—C12—N3117.93 (16)
C3—C4—H4A119.8C11—C12—N3118.28 (15)
C6—C5—C4120.21 (16)C12—C13—C8118.55 (17)
C6—C5—H5A119.9C12—C13—H13A120.7
C4—C5—H5A119.9C8—C13—H13A120.7
C8—N1—C1—O16.7 (3)O2—N2—C7—C2−29.6 (2)
C8—N1—C1—C2−176.12 (17)C1—N1—C8—C13−7.6 (3)
O1—C1—C2—C3110.1 (2)C1—N1—C8—C9171.65 (18)
N1—C1—C2—C3−67.2 (2)C13—C8—C9—C101.0 (3)
O1—C1—C2—C7−64.4 (3)N1—C8—C9—C10−178.25 (16)
N1—C1—C2—C7118.28 (19)C13—C8—C9—Cl1−179.73 (13)
C7—C2—C3—C4−0.8 (3)N1—C8—C9—Cl11.0 (2)
C1—C2—C3—C4−175.50 (17)C8—C9—C10—C11−0.8 (3)
C2—C3—C4—C51.0 (3)Cl1—C9—C10—C11179.93 (14)
C3—C4—C5—C6−0.3 (3)C9—C10—C11—C120.5 (3)
C4—C5—C6—C7−0.5 (3)C10—C11—C12—C13−0.4 (3)
C5—C6—C7—C20.8 (3)C10—C11—C12—N3178.34 (16)
C5—C6—C7—N2−175.84 (17)O4—N3—C12—C13−2.9 (2)
C3—C2—C7—C6−0.1 (3)O5—N3—C12—C13177.27 (17)
C1—C2—C7—C6174.54 (17)O4—N3—C12—C11178.28 (18)
C3—C2—C7—N2176.43 (16)O5—N3—C12—C11−1.6 (3)
C1—C2—C7—N2−8.9 (3)C11—C12—C13—C80.7 (3)
O3—N2—C7—C6−31.8 (2)N3—C12—C13—C8−178.11 (15)
O2—N2—C7—C6147.07 (18)C9—C8—C13—C12−0.9 (2)
O3—N2—C7—C2151.52 (17)N1—C8—C13—C12178.32 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.242.848 (2)121
C10—H10A···O4i0.952.353.246 (2)157
C11—H11A···O2ii0.952.553.202 (2)126

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2073).

References

  • Batsanov, A. S. & Lyubchik, S. B. (2003). Acta Cryst. E59, o155–o157.
  • Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug. Discov.1, 493–502. [PubMed]
  • Di Rienzo, F., Domenicano, A. & Riva di Sanseverino, L. (1980). Acta Cryst. B36, 586–591.
  • Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.
  • Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.
  • Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc.116, 3220–3230.
  • Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc.24, 389–392.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography