PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m555.
Published online 2008 March 14. doi:  10.1107/S1600536808006788
PMCID: PMC2961020

Bis{μ-2,5-bis­[4-(2-pyridylmethyl­amino)phen­yl]-1,3,4-oxadiazole}bis­[dichlorido­mercury(II)]

Abstract

In the title centrosymmetric compound, [Hg2Cl4(C26H22N6O)2], each HgII center adopts a distorted HgN3Cl2 trigonal bipyramidal coordination geometry, formed by two pyridine N atoms, one imine N atom and two chloride anions. Within the organic ligand, the oxadiazole ring is nearly coplanar with the two benzene rings [dihedral angles = 5.9 (4) and 6.5 (4)°] and nearly perpendicular to the two pyridine rings with the same dihedral angle of 77.4 (4)°. The two organic ligands bridge two HgII ions to form the macrocyclic complex. Inter­molecular N—H(...)Cl and N—H(...)N hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Dong et al. (2003 [triangle]). For related structures, see: Gallagher et al. (1999 [triangle]); Grupce et al. (1999 [triangle]). For synthesis, see: Ren et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m555-scheme1.jpg

Experimental

Crystal data

  • [Hg2Cl4(C26H22N6O)2]
  • M r = 1411.98
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m555-efi1.jpg
  • a = 8.5426 (19) Å
  • b = 9.945 (2) Å
  • c = 16.533 (4) Å
  • α = 83.773 (3)°
  • β = 80.001 (3)°
  • γ = 67.671 (2)°
  • V = 1278.2 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 6.26 mm−1
  • T = 298 (2) K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.113, T max = 0.153
  • 6681 measured reflections
  • 4652 independent reflections
  • 3878 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.118
  • S = 1.04
  • 4652 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 2.20 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006788/xu2406sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006788/xu2406Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (grant No. 20671060), and Shangdong Natural Science Foundation, China (grant Nos. J06D05 and 2006BS04040).

supplementary crystallographic information

Comment

Combining metal ions with oxadiazole-bridging organic ligands may result in coordination polymers with novel network connectivities (Dong et al., 2003). Our interest in understanding the relationship between the metal coordination modes with such ligands and their extended structures led us to synthesize the title HgII compound, (I).

As shown in Fig. 1, there are five primary bonds to each HgII center, three Hg—N bonds and two Hg—Cl bonds, resulting in a distorted trigonal bipyramid coordination geometry around the Hg center. Three Hg—N bond distances (Table 1) are significantly different, but all agree with those reported previously (Gallagher et al., 1999; Grupce et al., 1999). The bond angles at Hg1 atom rang from 70.81 (18)° [N4—Hg—N3] to 145.19 (16)° [N4—Hg1—Cl1]. While the ligand chelates to a Hg atom by a pyridine N and an imine N atoms, the other pyridine N atom bridges to another Hg atom to form the title binuclear macrocyclic complex with the Hg···Hg separation of 12.969 (2) Å. Within the ligand, the dihedral angles between the oxadiazole and N4-pyridine rings and between the oxadiazole and N6-pyridine rings are identical [77.4 (4)°]. Intermolecular N—H···Cl and N—H···N hydrogen bonding helps to stabilize the crystal structure (Table 2).

Experimental

2,5-Bis(4-aminophenyl)-1,3,4-oxadiazole (L1) was prepared according to the literature method (Ren et al., 1995). A solution of L1 (2.56 g, 10 mmol) and 2-pyridylaldehyde (4 ml) in anhydrous EtOH (20 ml) was refluxed for 24 h, with HCOOH as catalyzer. After the mixture was cooled to room temperature, the precipitated product was filtered off, washed with EtOH and dried, yielding a light-yellow power [2,5-bis(4-((2-pyridinyl)methyleneamino)phenyl) -1,3,4-oxadiazole] (L2). Then the L2 was deoxidized by NaBH4 in anhydrous CH3OH (20 ml). The solvent was removed under reduced pressure, and the residue was washed with water to afford the ligand [2,5-bis(4-((2-pyridinylmethyl)amino)phenyl)-1,3,4-oxadiazole] (L) as a yellow solid. A solution of HgCl2 (13.58 mg, 0.05 mmol) in EtOH (8 ml) was layered onto a solution of the ligand L (21.7 mg, 0.05 mmol) in CH2Cl2 (8 ml). Single yellow crystals of the title compound were obtained after 7 d at room temperature.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.91 or 0.86 Å imine groups), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The structure of (I), showing 30% displacement ellipsoids, hydrogen atoms have been omitted [symmetry code: (i) -x + 2,-y,-z].

Crystal data

[Hg2Cl4(C26H22N6O)2]Z = 1
Mr = 1411.98F000 = 684
Triclinic, P1Dx = 1.834 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5426 (19) ÅCell parameters from 2786 reflections
b = 9.945 (2) Åθ = 2.5–25.6º
c = 16.533 (4) ŵ = 6.26 mm1
α = 83.773 (3)ºT = 298 (2) K
β = 80.001 (3)ºBlock, yellow
γ = 67.671 (2)º0.40 × 0.40 × 0.30 mm
V = 1278.2 (5) Å3

Data collection

Bruker SMART APEX CCD diffractometer4652 independent reflections
Radiation source: fine-focus sealed tube3878 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 1.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −10→10
Tmin = 0.113, Tmax = 0.153k = −12→11
6681 measured reflectionsl = −20→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.0677P)2 + 1.1058P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4652 reflectionsΔρmax = 2.20 e Å3
325 parametersΔρmin = −0.84 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N60.7661 (9)−0.1644 (7)−0.4018 (4)0.0529 (16)
C50.6054 (9)−0.1027 (8)−0.3635 (4)0.0418 (16)
C60.5468 (11)−0.2001 (8)−0.2981 (4)0.0516 (19)
H6A0.5341−0.2764−0.32510.062*
H6B0.6356−0.2462−0.26360.062*
N50.3889 (8)−0.1271 (7)−0.2465 (4)0.0495 (15)
H50.2971−0.1354−0.25590.059*
C70.3785 (9)−0.0447 (7)−0.1829 (4)0.0399 (15)
Hg10.95952 (4)0.33183 (3)0.324081 (19)0.05155 (14)
Cl11.0242 (3)0.1191 (2)0.25208 (17)0.0723 (6)
Cl20.6820 (3)0.4107 (3)0.41247 (15)0.0854 (8)
O10.4543 (5)0.2726 (5)0.0143 (3)0.0354 (10)
N30.8599 (7)0.5232 (6)0.2061 (3)0.0371 (12)
H30.95110.51570.16660.045*
C190.7868 (8)0.4113 (8)0.1043 (4)0.0413 (16)
H190.90080.37950.08030.050*
C130.3210 (8)0.2390 (7)0.0028 (4)0.0380 (15)
C140.3883 (8)0.3660 (7)0.0762 (4)0.0356 (14)
C180.7341 (8)0.4991 (7)0.1714 (4)0.0363 (14)
C90.4933 (9)0.0866 (8)−0.1119 (4)0.0419 (16)
H90.58370.1135−0.10620.050*
C110.2122 (8)0.0950 (8)−0.0669 (4)0.0421 (16)
H110.11040.1278−0.03080.051*
C100.3426 (8)0.1393 (8)−0.0594 (4)0.0368 (14)
N20.2294 (7)0.3897 (7)0.1005 (4)0.0472 (15)
C150.5034 (8)0.4177 (7)0.1072 (4)0.0347 (14)
C160.4485 (8)0.5123 (8)0.1708 (4)0.0412 (16)
H160.33310.54950.19240.049*
C120.2300 (9)0.0027 (8)−0.1270 (4)0.0436 (16)
H120.1413−0.0282−0.13010.052*
C210.8165 (10)0.6524 (7)0.2504 (5)0.0481 (18)
H21A0.71510.66370.29030.058*
H21B0.78980.73650.21230.058*
N10.1858 (7)0.3049 (8)0.0520 (4)0.0508 (16)
C231.0048 (10)0.7665 (8)0.2940 (5)0.0516 (19)
H230.95190.85140.26370.062*
C200.6746 (8)0.3714 (8)0.0733 (4)0.0404 (15)
H200.71310.31210.02860.048*
C40.5020 (11)0.0367 (9)−0.3836 (5)0.0547 (19)
H40.39090.0769−0.35640.066*
N41.0367 (7)0.5233 (6)0.3357 (3)0.0420 (13)
C220.9585 (9)0.6475 (7)0.2942 (4)0.0401 (15)
C251.2047 (10)0.6336 (9)0.3837 (5)0.055 (2)
H251.28810.62650.41510.066*
C170.5620 (9)0.5517 (8)0.2022 (4)0.0432 (16)
H170.52260.61500.24510.052*
C30.5663 (14)0.1169 (10)−0.4453 (6)0.067 (2)
H3A0.50090.2133−0.45810.080*
C80.5139 (8)−0.0050 (8)−0.1727 (4)0.0415 (16)
H80.6178−0.0405−0.20710.050*
C10.8213 (13)−0.0863 (11)−0.4622 (6)0.069 (2)
H10.9318−0.1286−0.48970.083*
C241.1299 (11)0.7583 (9)0.3391 (5)0.058 (2)
H241.16280.83730.33910.069*
C261.1544 (9)0.5180 (8)0.3812 (4)0.0481 (17)
H261.20390.43320.41240.058*
C20.7255 (14)0.0522 (11)−0.4864 (6)0.070 (3)
H20.76880.1012−0.53020.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N60.064 (4)0.042 (4)0.052 (4)−0.020 (3)−0.011 (3)0.011 (3)
C50.052 (4)0.034 (4)0.043 (4)−0.017 (3)−0.012 (3)−0.006 (3)
C60.071 (5)0.036 (4)0.045 (4)−0.019 (4)−0.001 (4)−0.003 (3)
N50.053 (4)0.051 (4)0.048 (4)−0.023 (3)−0.006 (3)−0.012 (3)
C70.047 (4)0.024 (3)0.048 (4)−0.013 (3)−0.011 (3)0.004 (3)
Hg10.0623 (2)0.03300 (18)0.0642 (2)−0.02039 (14)−0.02216 (14)0.00926 (13)
Cl10.0659 (13)0.0379 (11)0.122 (2)−0.0203 (10)−0.0315 (12)−0.0090 (11)
Cl20.0705 (14)0.104 (2)0.0654 (15)−0.0260 (14)−0.0016 (11)0.0254 (13)
O10.030 (2)0.039 (3)0.039 (3)−0.0149 (19)−0.0056 (18)−0.0019 (19)
N30.040 (3)0.035 (3)0.038 (3)−0.016 (2)−0.007 (2)−0.001 (2)
C190.030 (3)0.046 (4)0.042 (4)−0.009 (3)0.000 (3)−0.005 (3)
C130.036 (3)0.039 (4)0.041 (4)−0.015 (3)−0.011 (3)0.004 (3)
C140.034 (3)0.036 (4)0.034 (4)−0.010 (3)−0.002 (3)0.000 (3)
C180.041 (4)0.034 (4)0.036 (4)−0.016 (3)−0.008 (3)0.004 (3)
C90.037 (4)0.041 (4)0.049 (4)−0.016 (3)−0.012 (3)0.005 (3)
C110.034 (3)0.048 (4)0.043 (4)−0.014 (3)−0.005 (3)−0.001 (3)
C100.035 (3)0.042 (4)0.036 (4)−0.017 (3)−0.012 (3)0.004 (3)
N20.040 (3)0.055 (4)0.050 (4)−0.020 (3)0.002 (3)−0.019 (3)
C150.031 (3)0.037 (4)0.035 (3)−0.012 (3)−0.007 (3)0.006 (3)
C160.035 (3)0.045 (4)0.039 (4)−0.011 (3)−0.004 (3)−0.004 (3)
C120.039 (4)0.046 (4)0.050 (4)−0.021 (3)−0.008 (3)−0.002 (3)
C210.057 (4)0.027 (4)0.065 (5)−0.013 (3)−0.031 (4)0.005 (3)
N10.035 (3)0.070 (5)0.055 (4)−0.026 (3)0.000 (3)−0.022 (3)
C230.065 (5)0.029 (4)0.065 (5)−0.014 (3)−0.027 (4)−0.001 (3)
C200.042 (4)0.039 (4)0.041 (4)−0.015 (3)−0.007 (3)−0.005 (3)
C40.071 (5)0.045 (5)0.053 (5)−0.022 (4)−0.021 (4)−0.001 (4)
N40.045 (3)0.039 (3)0.044 (3)−0.013 (3)−0.017 (3)0.000 (3)
C220.049 (4)0.029 (3)0.040 (4)−0.011 (3)−0.011 (3)−0.001 (3)
C250.057 (5)0.055 (5)0.059 (5)−0.017 (4)−0.027 (4)−0.011 (4)
C170.045 (4)0.041 (4)0.042 (4)−0.014 (3)−0.003 (3)−0.009 (3)
C30.094 (7)0.042 (5)0.071 (6)−0.025 (5)−0.040 (5)0.017 (4)
C80.035 (3)0.044 (4)0.043 (4)−0.010 (3)−0.011 (3)0.001 (3)
C10.072 (6)0.076 (7)0.062 (6)−0.034 (5)−0.014 (4)0.014 (5)
C240.068 (5)0.042 (5)0.072 (5)−0.023 (4)−0.025 (4)−0.009 (4)
C260.055 (4)0.034 (4)0.050 (4)−0.006 (3)−0.019 (3)0.000 (3)
C20.096 (7)0.077 (7)0.060 (5)−0.057 (6)−0.032 (5)0.028 (5)

Geometric parameters (Å, °)

N6—C11.330 (11)C11—C101.373 (9)
N6—C51.343 (10)C11—C121.375 (10)
C5—C41.372 (11)C11—H110.9300
C5—C61.520 (10)N2—N11.407 (8)
C6—N51.437 (10)C15—C161.385 (9)
C6—H6A0.9700C15—C201.388 (9)
C6—H6B0.9700C16—C171.368 (10)
N5—C71.373 (9)C16—H160.9300
N5—H50.8600C12—H120.9300
C7—C121.385 (10)C21—C221.500 (10)
C7—C81.397 (9)C21—H21A0.9700
Hg1—Cl12.373 (2)C21—H21B0.9700
Hg1—Cl22.451 (2)C23—C241.379 (11)
Hg1—N32.587 (6)C23—C221.383 (10)
Hg1—N42.275 (6)C23—H230.9300
Hg1—N6i2.745 (7)C20—H200.9300
O1—C131.350 (7)C4—C31.394 (12)
O1—C141.355 (7)C4—H40.9300
N3—C181.408 (8)N4—C221.338 (9)
N3—C211.440 (9)N4—C261.340 (9)
N3—H30.9100C25—C241.361 (12)
C19—C201.358 (9)C25—C261.378 (11)
C19—C181.390 (9)C25—H250.9300
C19—H190.9300C17—H170.9300
C13—N11.280 (9)C3—C21.354 (14)
C13—C101.446 (9)C3—H3A0.9300
C14—N21.284 (8)C8—H80.9300
C14—C151.452 (9)C1—C21.365 (14)
C18—C171.381 (10)C1—H10.9300
C9—C101.373 (10)C24—H240.9300
C9—C81.374 (10)C26—H260.9300
C9—H90.9300C2—H20.9300
C1—N6—C5117.3 (7)C16—C15—C20117.9 (6)
N6—C5—C4122.1 (7)C16—C15—C14122.2 (6)
N6—C5—C6114.8 (6)C20—C15—C14119.9 (6)
C4—C5—C6123.0 (7)C17—C16—C15120.8 (6)
N5—C6—C5114.9 (6)C17—C16—H16119.6
N5—C6—H6A108.5C15—C16—H16119.6
C5—C6—H6A108.5C11—C12—C7120.7 (6)
N5—C6—H6B108.5C11—C12—H12119.6
C5—C6—H6B108.5C7—C12—H12119.6
H6A—C6—H6B107.5N3—C21—C22112.4 (6)
C7—N5—C6122.8 (6)N3—C21—H21A109.1
C7—N5—H5118.6C22—C21—H21A109.1
C6—N5—H5118.6N3—C21—H21B109.1
N5—C7—C12120.0 (6)C22—C21—H21B109.1
N5—C7—C8121.8 (6)H21A—C21—H21B107.9
C12—C7—C8118.1 (6)C13—N1—N2106.8 (5)
N4—Hg1—Cl1145.19 (16)C24—C23—C22119.5 (7)
N4—Hg1—Cl299.31 (16)C24—C23—H23120.3
Cl1—Hg1—Cl2114.87 (10)C22—C23—H23120.3
N4—Hg1—N370.81 (18)C19—C20—C15121.1 (6)
Cl1—Hg1—N398.44 (13)C19—C20—H20119.5
Cl2—Hg1—N395.30 (13)C15—C20—H20119.5
N4—Hg1—N6i86.73 (19)C5—C4—C3118.9 (8)
Cl1—Hg1—N6i84.60 (15)C5—C4—H4120.6
Cl2—Hg1—N6i115.31 (15)C3—C4—H4120.6
N3—Hg1—N6i144.82 (18)C22—N4—C26119.0 (6)
C13—O1—C14103.7 (5)C22—N4—Hg1117.2 (4)
C18—N3—C21120.2 (5)C26—N4—Hg1123.8 (5)
C18—N3—Hg1110.2 (4)N4—C22—C23120.9 (7)
C21—N3—Hg198.4 (4)N4—C22—C21117.1 (6)
C18—N3—H3109.1C23—C22—C21122.0 (6)
C21—N3—H3109.1C24—C25—C26118.6 (7)
Hg1—N3—H3109.1C24—C25—H25120.7
C20—C19—C18121.1 (6)C26—C25—H25120.7
C20—C19—H19119.5C16—C17—C18121.2 (6)
C18—C19—H19119.5C16—C17—H17119.4
N1—C13—O1111.7 (6)C18—C17—H17119.4
N1—C13—C10128.3 (6)C2—C3—C4118.9 (8)
O1—C13—C10120.0 (6)C2—C3—H3A120.6
N2—C14—O1112.0 (6)C4—C3—H3A120.6
N2—C14—C15130.1 (6)C9—C8—C7119.8 (6)
O1—C14—C15117.8 (5)C9—C8—H8120.1
C17—C18—C19117.8 (6)C7—C8—H8120.1
C17—C18—N3124.0 (6)N6—C1—C2124.0 (9)
C19—C18—N3118.1 (6)N6—C1—H1118.0
C10—C9—C8121.6 (6)C2—C1—H1118.0
C10—C9—H9119.2C25—C24—C23119.4 (7)
C8—C9—H9119.2C25—C24—H24120.3
C10—C11—C12120.9 (6)C23—C24—H24120.3
C10—C11—H11119.5N4—C26—C25122.4 (7)
C12—C11—H11119.5N4—C26—H26118.8
C11—C10—C9118.5 (6)C25—C26—H26118.8
C11—C10—C13120.4 (6)C3—C2—C1118.7 (9)
C9—C10—C13121.0 (6)C3—C2—H2120.6
C14—N2—N1105.8 (5)C1—C2—H2120.6
C1—N6—C5—C4−1.7 (11)C8—C7—C12—C114.7 (11)
C1—N6—C5—C6177.0 (7)C18—N3—C21—C22170.7 (6)
N6—C5—C6—N5168.7 (6)Hg1—N3—C21—C2251.3 (6)
C4—C5—C6—N5−12.7 (11)O1—C13—N1—N20.0 (8)
C5—C6—N5—C7−77.9 (9)C10—C13—N1—N2−179.9 (7)
C6—N5—C7—C12−169.2 (7)C14—N2—N1—C13−0.4 (8)
C6—N5—C7—C811.5 (11)C18—C19—C20—C150.4 (11)
N4—Hg1—N3—C18−162.2 (4)C16—C15—C20—C193.5 (10)
Cl1—Hg1—N3—C1852.0 (4)C14—C15—C20—C19−176.2 (6)
Cl2—Hg1—N3—C18−64.2 (4)N6—C5—C4—C3−0.4 (11)
N6i—Hg1—N3—C18144.6 (4)C6—C5—C4—C3−179.0 (7)
N4—Hg1—N3—C21−35.6 (4)Cl1—Hg1—N4—C2293.9 (5)
Cl1—Hg1—N3—C21178.6 (4)Cl2—Hg1—N4—C22−75.3 (5)
Cl2—Hg1—N3—C2162.4 (4)N3—Hg1—N4—C2217.1 (5)
N6i—Hg1—N3—C21−88.8 (5)N6i—Hg1—N4—C22169.6 (5)
C14—O1—C13—N10.3 (8)Cl1—Hg1—N4—C26−86.1 (6)
C14—O1—C13—C10−179.8 (6)Cl2—Hg1—N4—C26104.7 (5)
C13—O1—C14—N2−0.6 (7)N3—Hg1—N4—C26−162.9 (6)
C13—O1—C14—C15176.6 (6)N6i—Hg1—N4—C26−10.5 (6)
C20—C19—C18—C17−3.9 (11)C26—N4—C22—C233.9 (10)
C20—C19—C18—N3173.1 (6)Hg1—N4—C22—C23−176.2 (5)
C21—N3—C18—C17−28.4 (10)C26—N4—C22—C21−174.5 (6)
Hg1—N3—C18—C1784.8 (7)Hg1—N4—C22—C215.4 (8)
C21—N3—C18—C19154.7 (7)C24—C23—C22—N4−1.9 (11)
Hg1—N3—C18—C19−92.1 (6)C24—C23—C22—C21176.4 (7)
C12—C11—C10—C9−1.6 (11)N3—C21—C22—N4−44.7 (9)
C12—C11—C10—C13178.6 (7)N3—C21—C22—C23136.9 (7)
C8—C9—C10—C112.0 (11)C15—C16—C17—C180.3 (11)
C8—C9—C10—C13−178.2 (6)C19—C18—C17—C163.6 (11)
N1—C13—C10—C11−5.6 (12)N3—C18—C17—C16−173.3 (6)
O1—C13—C10—C11174.5 (6)C5—C4—C3—C23.3 (12)
N1—C13—C10—C9174.6 (8)C10—C9—C8—C70.9 (11)
O1—C13—C10—C9−5.3 (10)N5—C7—C8—C9175.1 (7)
O1—C14—N2—N10.6 (8)C12—C7—C8—C9−4.3 (10)
C15—C14—N2—N1−176.1 (7)C5—N6—C1—C20.9 (13)
N2—C14—C15—C16−2.9 (12)C26—C25—C24—C230.9 (13)
O1—C14—C15—C16−179.4 (6)C22—C23—C24—C25−0.6 (12)
N2—C14—C15—C20176.7 (7)C22—N4—C26—C25−3.5 (11)
O1—C14—C15—C200.2 (9)Hg1—N4—C26—C25176.6 (6)
C20—C15—C16—C17−3.8 (10)C24—C25—C26—N41.1 (12)
C14—C15—C16—C17175.8 (7)C4—C3—C2—C1−4.1 (13)
C10—C11—C12—C7−1.8 (11)N6—C1—C2—C32.0 (15)
N5—C7—C12—C11−174.7 (7)

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···N2ii0.912.363.191 (8)152
N5—H5···Cl1iii0.862.683.517 (7)166

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2406).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, Y.-B., Ma, J.-P. & Huang, R.-Q. (2003). Inorg. Chem.42, 294–300. [PubMed]
  • Gallagher, J. F., Alyea, E. C. & Ferguson, G. (1999). Croat. Chem. Acta, 72, 243–250.
  • Grupce, O., Jouanouski, G., Kaitner, B. & Naumov, P. (1999). Croat. Chem. Acta, 72, 465–476.
  • Ren, Z.-J., Jiang, E. & Zhou, H.-B. (1995). Youji Huaxue, 15, 218–220.
  • Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography