PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o722.
Published online 2008 March 20. doi:  10.1107/S1600536808006752
PMCID: PMC2961019

2-Propyl-4H-thia­zolo[3,2-a][1,3,5]triazine-4-thione

Abstract

In the title compound, C8H9N3S2, the n-propyl chain is disordered over two orientations (site-occupancy ratio = 0.522:0.478) and is roughly perpendicular to the fused thia­zolotriazine system. The angle between the fused ring and the propyl chain is 83.6 (1)° [ 82.2 (1)° for the disordered chain]. The structure is stabilized by C—H(...)N hydrogen bonds.

Related literature

For related literature, see: Jiang et al. (2007 [triangle]); Pauling et al. (1960 [triangle]); Yunus et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o722-scheme1.jpg

Experimental

Crystal data

  • C8H9N3S2
  • M r = 211.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o722-efi1.jpg
  • a = 9.3240 (7) Å
  • b = 14.9973 (11) Å
  • c = 6.8063 (5) Å
  • β = 95.505 (1)°
  • V = 947.37 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 173 (2) K
  • 0.32 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.853, T max = 0.895
  • 5571 measured reflections
  • 2254 independent reflections
  • 2077 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.068
  • S = 1.05
  • 2254 reflections
  • 161 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006752/pk2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006752/pk2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

We have previously reported the crystal structure of 2-phenyl-4H-thiazolo[3,2,-a]- [1,3,5]triazine-4-thione with a phenyl group attached to the 1,3,5-triazine ring (Yunus et al., 2007). The molecule was essentially planar. In contrast, in the title compound the pendant n-propyl group is almost perpendicular to the fused thiazolo[3,2,-a][1,3,5]triazine ring, which are themselves co-planar (maximum deviation from mean plane is 0.0437 (1) Å from atom C4). The n-propyl chain is disordered over two orientations with a site occupancy ratio of 0.522:0.478 (Jiang et al., 2007). The CN bond distances of the 1,3,5-triazine ring are in the range 1.3191 (15) to 1.4093 (14) Å, in which N1—C5 bond length is slightly longer than that of N2—C5. These values are intermediate between those expected for single and double C—N bonds (1.47 and 1.27 Å, respectively). The C=S bond length of 1.6686 (12) Å is similar to that of the phenyl analog (Yunus et al., 2007) but is slightly longer then the pure double bond distance (1.61 Å) (Pauling 1960). The bond angles and bond lengths in the thiazole ring are within the normal ranges. The crystal structure is stabilized by weak C—H···N hydrogen bonding interactions.

Experimental

A mixture of ammonium thiocyanate (26 mmol) and butyryl chloride (26 mmol) in dry acetone (60 ml) was stirred for 30 min. Then 2-aminothiazole (26 mmol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from acetonitrile.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2) and 0.95 Å (CArH) with Uiso(H) values set to either 1.5Ueq (RCH3) or 1.2Ueq of the attached C atom.

Figures

Fig. 1.
: A view of the molecular structure. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C8H9N3S2F000 = 440
Mr = 211.32Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5571 reflections
a = 9.3240 (7) Åθ = 2.6–28.3º
b = 14.9973 (11) ŵ = 0.52 mm1
c = 6.8063 (5) ÅT = 173 (2) K
β = 95.505 (1)ºBlock, pale yellow
V = 947.37 (12) Å30.32 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2254 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 173(2) Kθmax = 28.3º
ω and [var phi] scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −12→12
Tmin = 0.853, Tmax = 0.895k = −19→14
5571 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.068  w = 1/[σ2(Fo2) + (0.0392P)2 + 0.2601P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2254 reflectionsΔρmax = 0.32 e Å3
161 parametersΔρmin = −0.28 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.20093 (3)0.710163 (18)0.27470 (4)0.02095 (10)
S2−0.15462 (3)0.443002 (19)0.21702 (4)0.02265 (10)
N10.04853 (10)0.56884 (6)0.25767 (13)0.01739 (19)
N20.12868 (11)0.42185 (7)0.29852 (15)0.0235 (2)
N30.29929 (11)0.54164 (7)0.31895 (15)0.0231 (2)
C10.01557 (13)0.71890 (8)0.23196 (17)0.0224 (2)
H1−0.03440.77390.21430.027*
C2−0.04951 (12)0.63902 (8)0.22664 (17)0.0211 (2)
H2−0.15080.63110.20430.025*
C30.18861 (12)0.59613 (7)0.28536 (15)0.0185 (2)
C50.01588 (12)0.47711 (7)0.25939 (15)0.0187 (2)
C40.26174 (14)0.45502 (8)0.32834 (18)0.0259 (3)0.522 (4)
C60.3713 (6)0.3883 (4)0.4050 (7)0.0221 (9)0.522 (4)
H6A0.32880.32780.40030.029 (8)*0.522 (4)
H6B0.40620.40220.54360.025 (7)*0.522 (4)
C70.4958 (2)0.39267 (16)0.2751 (4)0.0248 (6)0.522 (4)
H7A0.53570.45390.27990.021 (7)*0.522 (4)
H7B0.57300.35170.32920.036 (8)*0.522 (4)
C80.4516 (9)0.3679 (6)0.0614 (6)0.0357 (13)0.522 (4)
H8A0.53570.3714−0.01430.030 (8)*0.522 (4)
H8B0.37730.40930.00550.045 (10)*0.522 (4)
H8C0.41340.30700.05520.061 (12)*0.522 (4)
C4A0.26174 (14)0.45502 (8)0.32834 (18)0.0259 (3)0.478 (4)
C6A0.3938 (7)0.3911 (4)0.3487 (8)0.0255 (12)0.478 (4)
H6A10.48270.42760.36210.047 (11)*0.478 (4)
H6A20.39130.35650.47220.038 (11)*0.478 (4)
C7A0.4034 (3)0.32554 (16)0.1781 (4)0.0247 (7)0.478 (4)
H7A10.47360.27810.21990.036 (9)*0.478 (4)
H7A20.30830.29700.14610.037 (9)*0.478 (4)
C8A0.4491 (8)0.3709 (6)−0.0056 (8)0.0320 (11)0.478 (4)
H8A10.45830.3263−0.10870.064 (14)*0.478 (4)
H8A20.54200.40070.02630.061 (13)*0.478 (4)
H8A30.37640.4152−0.05280.030 (9)*0.478 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02618 (16)0.01417 (15)0.02233 (16)−0.00294 (10)0.00150 (11)0.00001 (9)
S20.02469 (16)0.01845 (15)0.02542 (16)−0.00432 (10)0.00559 (11)−0.00188 (10)
N10.0225 (4)0.0139 (4)0.0155 (4)−0.0004 (3)0.0008 (3)0.0001 (3)
N20.0307 (5)0.0151 (4)0.0231 (5)0.0010 (4)−0.0059 (4)−0.0003 (4)
N30.0254 (5)0.0183 (5)0.0243 (5)0.0009 (4)−0.0051 (4)−0.0020 (4)
C10.0273 (6)0.0166 (5)0.0236 (6)0.0020 (4)0.0037 (4)−0.0001 (4)
C20.0235 (5)0.0172 (5)0.0226 (5)0.0024 (4)0.0029 (4)0.0003 (4)
C30.0247 (5)0.0157 (5)0.0147 (5)−0.0022 (4)0.0000 (4)−0.0010 (4)
C50.0280 (5)0.0148 (5)0.0130 (5)−0.0015 (4)0.0010 (4)−0.0015 (4)
C40.0301 (6)0.0183 (5)0.0266 (6)0.0025 (4)−0.0106 (5)−0.0023 (4)
C60.0217 (16)0.0211 (14)0.023 (2)0.0022 (11)−0.0009 (16)0.0060 (18)
C70.0159 (11)0.0253 (12)0.0332 (13)0.0029 (8)0.0023 (9)−0.0008 (9)
C80.0347 (17)0.039 (2)0.034 (3)0.0051 (15)0.006 (3)−0.009 (3)
C4A0.0301 (6)0.0183 (5)0.0266 (6)0.0025 (4)−0.0106 (5)−0.0023 (4)
C6A0.032 (3)0.0196 (16)0.023 (3)0.0051 (16)−0.0085 (19)0.0019 (19)
C7A0.0224 (11)0.0180 (12)0.0337 (15)0.0042 (9)0.0030 (10)0.0003 (10)
C8A0.0268 (16)0.0325 (18)0.038 (3)−0.0014 (13)0.009 (3)0.004 (3)

Geometric parameters (Å, °)

S1—C31.7161 (11)C6—H6B0.9900
S1—C11.7299 (13)C7—C81.519 (5)
S2—C51.6686 (12)C7—H7A0.9900
N1—C31.3644 (14)C7—H7B0.9900
N1—C21.3967 (14)C8—H8A0.9800
N1—C51.4093 (14)C8—H8B0.9800
N2—C41.3340 (16)C8—H8C0.9800
N2—C51.3455 (15)C6A—C7A1.531 (6)
N3—C31.3191 (15)C6A—H6A10.9900
N3—C41.3485 (15)C6A—H6A20.9900
C1—C21.3418 (17)C7A—C8A1.520 (6)
C1—H10.9500C7A—H7A10.9900
C2—H20.9500C7A—H7A20.9900
C4—C61.488 (6)C8A—H8A10.9800
C6—C71.526 (5)C8A—H8A20.9800
C6—H6A0.9900C8A—H8A30.9800
C3—S1—C190.73 (6)C8—C7—C6113.1 (4)
C3—N1—C2113.50 (9)C8—C7—H7A109.0
C3—N1—C5119.76 (9)C6—C7—H7A109.0
C2—N1—C5126.73 (10)C8—C7—H7B109.0
C4—N2—C5119.89 (10)C6—C7—H7B109.0
C3—N3—C4113.74 (10)H7A—C7—H7B107.8
C2—C1—S1112.26 (9)C7—C8—H8A109.5
C2—C1—H1123.9C7—C8—H8B109.5
S1—C1—H1123.9H8A—C8—H8B109.5
C1—C2—N1112.39 (10)C7—C8—H8C109.5
C1—C2—H2123.8H8A—C8—H8C109.5
N1—C2—H2123.8H8B—C8—H8C109.5
N3—C3—N1124.11 (10)C7A—C6A—H6A1108.4
N3—C3—S1124.77 (9)C7A—C6A—H6A2108.4
N1—C3—S1111.11 (8)H6A1—C6A—H6A2107.5
N2—C5—N1115.95 (10)C8A—C7A—C6A112.2 (4)
N2—C5—S2123.99 (9)C8A—C7A—H7A1109.2
N1—C5—S2120.05 (8)C6A—C7A—H7A1109.2
N2—C4—N3126.44 (11)C8A—C7A—H7A2109.2
N2—C4—C6113.6 (3)C6A—C7A—H7A2109.2
N3—C4—C6119.4 (3)H7A1—C7A—H7A2107.9
C4—C6—C7107.7 (3)C7A—C8A—H8A1109.5
C4—C6—H6A110.2C7A—C8A—H8A2109.5
C7—C6—H6A110.2H8A1—C8A—H8A2109.5
C4—C6—H6B110.2C7A—C8A—H8A3109.5
C7—C6—H6B110.2H8A1—C8A—H8A3109.5
H6A—C6—H6B108.5H8A2—C8A—H8A3109.5
C3—S1—C1—C2−0.03 (9)C4—N2—C5—S2179.23 (9)
S1—C1—C2—N10.23 (13)C3—N1—C5—N23.03 (15)
C3—N1—C2—C1−0.38 (14)C2—N1—C5—N2−178.04 (10)
C5—N1—C2—C1−179.36 (10)C3—N1—C5—S2−177.64 (8)
C4—N3—C3—N1−1.45 (16)C2—N1—C5—S21.28 (15)
C4—N3—C3—S1177.43 (9)C5—N2—C4—N3−1.78 (19)
C2—N1—C3—N3179.37 (10)C5—N2—C4—C6169.6 (2)
C5—N1—C3—N3−1.58 (16)C3—N3—C4—N23.24 (19)
C2—N1—C3—S10.35 (11)C3—N3—C4—C6−167.7 (2)
C5—N1—C3—S1179.41 (7)N2—C4—C6—C7129.4 (3)
C1—S1—C3—N3−179.19 (10)N3—C4—C6—C7−58.6 (4)
C1—S1—C3—N1−0.19 (8)C4—C6—C7—C8−62.5 (5)
C4—N2—C5—N1−1.48 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.952.383.3261 (16)171

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2086).

References

  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiang, Y.-P., Qiu, T., Wang, L.-E. & Wang, J.-N. (2007). Acta Cryst. E63, o3096.
  • Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography