PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o758.
Published online 2008 March 29. doi:  10.1107/S1600536808007599
PMCID: PMC2961018

(1R,1′R,3S,3′S)-5,5′,10,10′-Tetra­meth­oxy-1,1′,3,3′-tetra­methyl-3,3′,4,4′-tetra­hydro-1H,1′H-8,8′-bi[benzo[g]isochromene]

Abstract

In the title compound, C34H38O6, the methyl groups on each pyran ring exhibit 1,3-cis stereochemistry, established during synthesis by pseudo-axial delivery of hydride during a lactol reduction step. In the crystal structure, the mol­ecule lies on a twofold rotation axis and the torsion angle about the central diaryl bond is 41.3 (1)°. The mol­ecules pack in a herringbone arrangement.

Related literature

For details of the synthesis, see: Brimble et al. (2008 [triangle]). For related literature, see: Brenstrum et al. (2001 [triangle]); Gibson et al. (2007 [triangle]); Gill et al. (1997a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o758-scheme1.jpg

Experimental

Crystal data

  • C34H38O6
  • M r = 542.64
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o758-efi1.jpg
  • a = 8.8773 (2) Å
  • b = 13.9298 (2) Å
  • c = 23.1234 (4) Å
  • V = 2859.42 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 89 (2) K
  • 0.36 × 0.28 × 0.22 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.889, T max = 0.981
  • 22789 measured reflections
  • 2035 independent reflections
  • 1542 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.095
  • S = 1.13
  • 2035 reflections
  • 185 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007599/bi2283sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007599/bi2283Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Tania Groutso is gratefully acknowledged for assistance with the data collection.

supplementary crystallographic information

Comment

Recent synthetic effort has been directed towards enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins which were isolated from the New Zealand toadstool Dermocybe cardinalis (Gill et al., 1997a, 1997b). We now report the crystal structure of the title compound (Fig. 1). The assignment of absolute stereochemistry is based on the initial use of a chiral pool reagent in the synthetic sequence. Since the stereochemistry at C3 in the pyran rings (C12 in the crystallographic numbering scheme; Fig. 2) is known to be S, the absolute configuration at C1 (C13 in the crystallographic numbering scheme) has therefore been assigned as R. The torsion angle about the diaryl bond is 41.3 (1)°. The molecules pack in a herringbone arrangement (Fig. 3).

Experimental

To a solution of 1,1'-(6,6'-bis((S)-2-(tert-butyldiphenylsilyloxy)propyl)-5,5',8,8'-tetramethoxy-2,2'-binaphthyl-7,7'-diyl)diethanone (144 mg, 0.14 mmol) in THF (5 ml) was added a 1 M solution of tetra-n-butylammonium fluoride (3.0 ml, 3.0 mmol). The reaction mixture was stirred under nitrogen at room temperature for 3 d then concentrated in vacuo. The resulting residue was flushed through a pad of silica (hexanes-ethyl acetate 1:1–1:3). The filtrate was concentrated in vacuo and the resulting oil was dissolved in distilled dichloromethane (5 ml) and cooled to 195.15 K. Trifluoroacetic acid (0.065 ml, 0.86 mmol) was added and the reaction mixture was stirred for 15 min before addition of triethylsilane (0.13 ml, 0.80 mmol). The reaction mixture was then allowed to reach room temperature over 16 h. Water (20 ml) was added and the mixture extracted with ethyl acetate (20 ml × 3). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, concentrated in vacuo and the resulting residue was purified by flash chromatography eluting with hexanes-ethyl acetate (7:3) to give the title compound (52 mg, 0.096 mmol, 70%) as a pale yellow solid which was recrystallized from diethyl ether-dichloromethane; m.p. 541.15–542.15 K

Refinement

H atoms were placed in calculated positions and were refined using a riding model (C–H = 0.93 or 0.97 Å), with U iso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant anomalous scattering, the absolute configuration could not be determined and Friedel pairs were merged. The configuration was inferred from the known stereochemistry (S) of C12.

Figures

Fig. 1.
Scheme showing the standard chemical numbering scheme.
Fig. 2.
The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms, showing the crystallographic numbering scheme. Symmetry code: (i) x, -y, 1 - z.
Fig. 3.
Molecular packing viewed down the a-axis, with H atoms omitted.

Crystal data

C34H38O6Dx = 1.261 Mg m3
Mr = 542.64Melting point: 541.15 K
Orthorhombic, C2221Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 4238 reflections
a = 8.8773 (2) Åθ = 1.8–28.6º
b = 13.9298 (2) ŵ = 0.09 mm1
c = 23.1234 (4) ÅT = 89 (2) K
V = 2859.42 (9) Å3Needle, pale yellow
Z = 40.36 × 0.28 × 0.22 mm
F000 = 1160

Data collection

Siemens SMART CCD diffractometer2035 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.052
T = 89(2) Kθmax = 28.6º
ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −11→11
Tmin = 0.889, Tmax = 0.981k = −18→18
22789 measured reflectionsl = −27→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1354P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2035 reflectionsΔρmax = 0.21 e Å3
185 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.81372 (17)0.37827 (10)0.59844 (6)0.0305 (4)
O10.33079 (16)0.12481 (10)0.60649 (6)0.0293 (4)
O30.29982 (17)0.39411 (11)0.69152 (7)0.0340 (4)
C40.7076 (2)0.22511 (15)0.57426 (9)0.0249 (5)
C20.8442 (2)0.11042 (16)0.51523 (9)0.0264 (5)
H20.93130.09360.49530.032*
C10.7206 (2)0.04620 (15)0.51579 (8)0.0240 (5)
C90.4425 (2)0.27435 (16)0.63512 (9)0.0259 (5)
C50.5831 (2)0.16126 (15)0.57533 (9)0.0235 (4)
C70.6948 (2)0.31407 (15)0.60336 (9)0.0260 (5)
C30.8384 (2)0.19642 (15)0.54331 (9)0.0257 (5)
H30.92150.23700.54220.031*
C100.4513 (2)0.18827 (15)0.60595 (9)0.0254 (5)
C60.5934 (2)0.07262 (14)0.54638 (9)0.0243 (5)
H60.51220.03050.54790.029*
C110.5454 (3)0.43732 (15)0.65890 (10)0.0312 (5)
H11A0.60290.48430.63720.037*
H11B0.58190.43710.69840.037*
C80.5659 (2)0.33918 (16)0.63246 (9)0.0267 (5)
C130.2982 (3)0.29950 (16)0.66695 (9)0.0314 (5)
H130.21440.29570.63950.038*
C120.3790 (3)0.46387 (17)0.65792 (10)0.0354 (6)
H120.34220.46220.61800.043*
C170.3459 (3)0.56069 (17)0.68390 (11)0.0430 (7)
H17A0.23970.57330.68160.065*
H17B0.39990.60930.66300.065*
H17C0.37680.56120.72370.065*
C150.9036 (3)0.3855 (2)0.64991 (10)0.0382 (6)
H15A0.84310.41020.68090.057*
H15B0.98680.42810.64300.057*
H15C0.94110.32320.66010.057*
C140.2395 (3)0.12913 (18)0.55544 (10)0.0382 (6)
H14A0.19770.19240.55160.057*
H14B0.15940.08310.55830.057*
H14C0.30030.11480.52220.057*
C160.2646 (3)0.23321 (17)0.71690 (10)0.0427 (6)
H16A0.34520.23650.74450.064*
H16B0.25520.16860.70290.064*
H16C0.17210.25240.73500.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0365 (9)0.0286 (8)0.0265 (8)−0.0083 (7)−0.0003 (7)0.0009 (7)
O10.0278 (8)0.0357 (8)0.0244 (8)−0.0046 (7)0.0007 (6)0.0002 (7)
O30.0385 (9)0.0344 (9)0.0292 (9)0.0067 (8)0.0023 (7)−0.0034 (7)
C40.0283 (11)0.0256 (11)0.0208 (11)0.0011 (9)−0.0019 (8)0.0030 (9)
C20.0239 (10)0.0329 (12)0.0224 (12)−0.0005 (9)0.0010 (8)0.0024 (10)
C10.0284 (10)0.0243 (11)0.0194 (11)0.0012 (9)−0.0028 (8)0.0035 (9)
C90.0309 (11)0.0291 (12)0.0178 (10)0.0024 (9)0.0001 (8)0.0027 (9)
C50.0266 (10)0.0245 (11)0.0194 (11)0.0015 (9)−0.0014 (8)0.0034 (9)
C70.0318 (11)0.0236 (11)0.0226 (11)−0.0019 (9)−0.0018 (9)0.0035 (9)
C30.0249 (10)0.0276 (12)0.0247 (11)−0.0038 (9)−0.0004 (9)0.0030 (9)
C100.0255 (11)0.0286 (11)0.0221 (10)−0.0008 (9)−0.0006 (8)0.0050 (10)
C60.0255 (10)0.0256 (11)0.0218 (11)−0.0024 (9)−0.0023 (9)0.0020 (9)
C110.0412 (13)0.0235 (11)0.0288 (12)0.0012 (10)0.0022 (10)0.0005 (10)
C80.0346 (11)0.0261 (11)0.0193 (11)0.0031 (9)−0.0015 (9)0.0048 (9)
C130.0316 (12)0.0336 (13)0.0289 (12)0.0051 (10)0.0021 (9)−0.0043 (10)
C120.0504 (14)0.0315 (13)0.0243 (12)0.0103 (11)−0.0012 (10)0.0012 (11)
C170.0602 (16)0.0371 (14)0.0318 (14)0.0160 (12)−0.0048 (12)−0.0012 (12)
C150.0364 (13)0.0429 (14)0.0354 (14)−0.0068 (11)−0.0038 (11)−0.0004 (12)
C140.0303 (12)0.0498 (16)0.0346 (14)−0.0090 (11)−0.0032 (10)0.0045 (12)
C160.0480 (14)0.0448 (15)0.0354 (13)−0.0002 (12)0.0158 (12)−0.0041 (12)

Geometric parameters (Å, °)

O2—C71.388 (2)C6—H60.9300
O2—C151.436 (3)C11—C81.509 (3)
O1—C101.388 (2)C11—C121.523 (3)
O1—C141.433 (3)C11—H11A0.9700
O3—C121.429 (3)C11—H11B0.9700
O3—C131.435 (3)C13—C161.508 (3)
C4—C71.415 (3)C13—H130.9800
C4—C31.421 (3)C12—C171.505 (3)
C4—C51.419 (3)C12—H120.9800
C2—C31.364 (3)C17—H17A0.9600
C2—C11.416 (3)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C1—C61.382 (3)C15—H15A0.9600
C1—C1i1.480 (4)C15—H15B0.9600
C9—C101.378 (3)C15—H15C0.9600
C9—C81.421 (3)C14—H14A0.9600
C9—C131.518 (3)C14—H14B0.9600
C5—C61.408 (3)C14—H14C0.9600
C5—C101.418 (3)C16—H16A0.9600
C7—C81.373 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C7—O2—C15113.58 (16)C9—C8—C11117.76 (19)
C10—O1—C14113.67 (15)O3—C13—C16105.14 (17)
C12—O3—C13114.47 (16)O3—C13—C9113.29 (18)
C7—C4—C3123.47 (19)C16—C13—C9113.37 (19)
C7—C4—C5118.55 (18)O3—C13—H13108.3
C3—C4—C5117.97 (18)C16—C13—H13108.3
C3—C2—C1121.43 (18)C9—C13—H13108.3
C3—C2—H2119.3O3—C12—C17107.21 (19)
C1—C2—H2119.3O3—C12—C11107.70 (18)
C6—C1—C2118.01 (18)C17—C12—C11113.7 (2)
C6—C1—C1i118.94 (14)O3—C12—H12109.4
C2—C1—C1i123.03 (14)C17—C12—H12109.4
C10—C9—C8119.23 (18)C11—C12—H12109.4
C10—C9—C13119.07 (19)C12—C17—H17A109.5
C8—C9—C13121.64 (19)C12—C17—H17B109.5
C6—C5—C10121.61 (19)H17A—C17—H17B109.5
C6—C5—C4119.37 (18)C12—C17—H17C109.5
C10—C5—C4119.02 (18)H17A—C17—H17C109.5
C8—C7—O2120.66 (18)H17B—C17—H17C109.5
C8—C7—C4121.54 (19)O2—C15—H15A109.5
O2—C7—C4117.67 (18)O2—C15—H15B109.5
C2—C3—C4121.19 (19)H15A—C15—H15B109.5
C2—C3—H3119.4O2—C15—H15C109.5
C4—C3—H3119.4H15A—C15—H15C109.5
C9—C10—O1120.42 (18)H15B—C15—H15C109.5
C9—C10—C5121.46 (19)O1—C14—H14A109.5
O1—C10—C5118.11 (18)O1—C14—H14B109.5
C1—C6—C5122.02 (19)H14A—C14—H14B109.5
C1—C6—H6119.0O1—C14—H14C109.5
C5—C6—H6119.0H14A—C14—H14C109.5
C8—C11—C12109.3 (2)H14B—C14—H14C109.5
C8—C11—H11A109.8C13—C16—H16A109.5
C12—C11—H11A109.8C13—C16—H16B109.5
C8—C11—H11B109.8H16A—C16—H16B109.5
C12—C11—H11B109.8C13—C16—H16C109.5
H11A—C11—H11B108.3H16A—C16—H16C109.5
C7—C8—C9120.13 (19)H16B—C16—H16C109.5
C7—C8—C11121.99 (19)

Symmetry codes: (i) x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2283).

References

  • Brenstrum, T. J., Brimble, M. A. & Turner, P. (2001). Acta Cryst. E57, o28–o29.
  • Brimble, M. A., Gibson, J. S., Sejberg, J. J. P. & Sperry, J. (2008). Synlett. 867–870.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Gibson, J. S., Andrey, O. & Brimble, M. A. (2007). Synthesis, pp. 2611–2613.
  • Gill, M., Buchanan, M. S. & Yu, J. (1997a). Aust. J. Chem.50, 1081–1089.
  • Gill, M., Buchanan, M. S. & Yu, J. (1997b). J. Chem. Soc. Perkin Trans. 1, pp. 919–925.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography