PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o715.
Published online 2008 March 14. doi:  10.1107/S1600536808006727
PMCID: PMC2961017

(±)-1-{8′-(tert-Butyl­diphenyl­silyloxy­meth­yl)-1′,7′-dioxaspiro­[5.5]undecan-2′-yl}uridine

Abstract

The crystal structure of the title compound, C30H38N2O5Si, has been investigated to establish the relative stereochemistry at the spiro ring junction and the two anomeric centres. Each of the O atoms in the tetra­hydro­pyran rings adopts an axial position on the neighbouring ring. This bis­-diaxial conformation is adopted, thus gaining maximum stablization from the anomeric effect. The silyl-protected hydroxy­methyl and uracil substituents adopt equatorial positions on their associated tetra­hydro­pyran rings, thereby minimizing unfavourable steric inter­actions. The dimeric (2′R*,6′R*,8′R*)- and (2′S*,6′S*,8′S*)-uridine units are connected to each other across crystallographic inversion centres via inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Mead & Zemribo (1996 [triangle]); Brimble et al. (1998 [triangle], 2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o715-scheme1.jpg

Experimental

Crystal data

  • C30H38N2O5Si
  • M r = 534.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o715-efi4.jpg
  • a = 14.7960 (2) Å
  • b = 12.5092 (2) Å
  • c = 15.0935 (1) Å
  • β = 99.420 (1)°
  • V = 2755.93 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 (2) K
  • 0.32 × 0.26 × 0.12 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.960, T max = 0.985
  • 15898 measured reflections
  • 5612 independent reflections
  • 4327 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.111
  • S = 1.09
  • 5612 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006727/si2075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006727/si2075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the New Zealand Tertiary Education Commission for the award of a Top Achiever Doctoral Scholarship (KWC).

supplementary crystallographic information

Comment

The title uridine was prepared as a part of study to elaborate 6,6-spiroacetal scaffolds to incorporate a nucleobase at the anomeric position, thus generating a collection of novel hybrid structures. Similar syntheses of 6,6-spiroacetal based molecules in the presence of a Lewis acid and persilylated nucleophile have been reported by Mead & Zemribo (1996) and Brimble et al. (1998, 2004).

Figure 1 depicts the structure and atom numbering of the title uridine. The spiroacetal ring system adopts a conformation in which each of the O atoms (O1' and O7') adjacent to the C6' spirocentre adopts an axial position on the neighbouring ring, thus gaining maximum stabilization from the anomeric effect. The silyl-protected hydroxymethyl and uracil substituents adopt equatorial positions on their associated tetrahydropyran rings in order to minimized unfavourable steric interactions.

Figure 2 depicts molecular packing of racemic uridine units. The dimeric (2'R*,6'R*,8'R*) and (2'S*,6'S*,8'S*)-uridine units are connected to each other by the crystallographic inversion centres via intermolecular N3–H3A···O4 hydrogen bonds (Table 1).

Experimental

To a suspension of uracil (6.95 mg, 61.9 µmol) in hexamethyldisilazane (0.5 ml) under an atmosphere of argon was added ammonium sulfate (2 crystals) and the mixture was heated to reflux until the white solid dissolved. After 3 h, the mixture was concentrated in vacuo to a thick yellow oil. 8-(tert-Butyldiphenylsilyloxymethyl)-2-acetoxy-1,7-dioxaspiro[5.5] undecane (18.8 mg, 38.9 µmol) in CH2Cl2 (1.0 ml) was transferred to the yellow oil via cannula. Freshly prepared TMSOTf solution (95.4 µL, 66.8 µmol, 0.70 mol L-1 in CH2Cl2) was added dropwise. After 3 h, saturated NaHCO3 solution (2 ml) and CH2Cl2 (2 ml) were added and the mixture was stirred for 15 min. The aqueous phase was extracted with CH2Cl2 (3 x 4 ml). The combined organic extracts were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography using hexane–EtOAc (19:1 to 7:3) as eluent yielded the title compound (7.50 mg, 36%) as a pale-yellow powder. Recrystallization from hexane–CH2Cl2 afforded pale yellow needles.

HRMS (FAB): found MH+, 535.2633, C30H39N2O5Si requires 535.2628.

νmax (film)/cm-1: 3376 (N–H), 2919 (C–H), 1689 (C=O), 1668 (C=O), 1456, 1377, 1267 (C–O), 1103 (C–O), 982, 699.

δH (300 MHz; CDCl3): 1.07 (9 H, s, OSiPh2tBu), 1.31–1.38 (1 H, m, H9'A), 1.41–1.51 (3 H, m, H3'A, H5'A and H11'A), 1.56–1.76 (5 H, m, H4'A, H5'B, H9'B, H10'A and H11'B), 1.80–1.94 (2 H, m, H3'B and H10'B), 2.07–2.16 (1 H, m, H4'B), 3.63 (1 H, dd, JAB 10.4 and JH1''A,8' 4.5, H1''A), 3.72 (1 H, dd, JAB 10.4 and JH1''B,8' 5.3, H1''B), 3.82–3.89 (1 H, m, H8'), 5.73 (1 H, d, J5,6 8.2, H5), 5.94 (1 H, dd, J2'ax,3'ax 11.1 and J2'ax,3'eq 2.5, H2'ax), 7.33–7.42 (6 H, m, Ph), 7.46 (1 H, d, J6,5 8.2, H6), 7.70–7.76 (4 H, m, Ph), 8.17 (1 H, br s, NH).

δC (75 MHz; CDCl3): 17.9 (CH2, C4'), 18.0 (CH2, C10'), 19.3 (C, OSiPh2tBu), 26.5 (CH2, C9'), 26.8 (CH3, OSiPh2tBu), 30.3 (CH2, C3'), 34.7 (CH2, C5'), 34.8 (CH2, C11'), 67.0 (CH2, C1''), 70.7 (CH, C8'), 76.8 (CH, C2'), 99.1 (C, C6'), 102.1 (CH, C5), 127.6 (CH, Ph), 129.5 (CH, Ph), 129.5 (CH, Ph), 133.8 (C, Ph), 135.7 (CH, Ph), 135.7 (CH, Ph), 140.3 (CH, C6), 149.7 (C, C2), 162.8 (C, C4).

m/z (FAB): 535 (MH+, 3%), 477 (MtBu, 11), 457 (M – Ph, 3), 423 (C26H35O3Si, 19), 239 (SiPh2tBu, 8), 199 (35), 197 (35), 135 (100), 105 (32), 91 (73).

Refinement

H atoms were placed in calculated positions and were refined using a riding model (C—H = 0.93 or 0.97 Å), with U iso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
The molecular structure and atom numbering scheme of (2'S*,6'S*,8'S*)-uridine with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of racemic uridine units. The dimeric units of opposite chirality, (2'R*,6R'*,8'R*)- and (2'S*,6'S*,8'S*)-uridines are connected to each other by intermolecular hydrogen bonds. Dashed lines represent hydrogen bonds. Most hydrogen atoms ...

Crystal data

C30H38N2O5SiDx = 1.289 Mg m3
Mr = 534.71Melting point: 482.4(9) K
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 14.7960 (2) ÅCell parameters from 5612 reflections
b = 12.5092 (2) Åθ = 1.8–26.4º
c = 15.0935 (1) ŵ = 0.13 mm1
β = 99.420 (1)ºT = 293 (2) K
V = 2755.93 (6) Å3Needle, pale yellow
Z = 40.32 × 0.26 × 0.12 mm
F000 = 1144

Data collection

Siemens SMART CCD diffractometer5612 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 293(2) Kθmax = 26.4º
area–detector ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→18
Tmin = 0.960, Tmax = 0.985k = −15→12
15898 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0251P)2 + 2.8069P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5612 reflectionsΔρmax = 0.30 e Å3
343 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si0.55794 (4)0.75101 (5)0.10014 (4)0.01617 (14)
O1'0.36047 (10)1.12404 (11)0.28260 (9)0.0173 (3)
O1''0.56790 (11)0.86029 (11)0.16209 (10)0.0199 (3)
O20.19564 (11)0.89649 (12)0.17326 (11)0.0253 (4)
O40.00327 (12)1.13783 (12)0.01545 (10)0.0267 (4)
N10.21693 (12)1.07393 (14)0.21025 (12)0.0179 (4)
N30.10473 (13)1.02092 (14)0.09140 (12)0.0205 (4)
H3A0.08070.97150.05550.025*
C1''0.53531 (16)0.87555 (17)0.24520 (14)0.0208 (5)
H1''A0.58340.85910.29510.025*
H1''B0.48370.82870.24840.025*
C20.17425 (15)0.98991 (17)0.15908 (14)0.0188 (5)
C2'0.28987 (15)1.04722 (17)0.28551 (14)0.0180 (4)
H2'A0.31360.97580.27580.022*
C3'0.25589 (15)1.04928 (18)0.37497 (14)0.0204 (5)
H3'A0.20810.99620.37520.025*
H3'B0.23041.11900.38440.025*
C4'0.33596 (15)1.02537 (18)0.44990 (14)0.0197 (5)
H4'A0.31621.03210.50790.024*
H4'B0.35720.95280.44400.024*
C40.06939 (16)1.12308 (18)0.07495 (14)0.0208 (5)
C50.11736 (15)1.20464 (18)0.13209 (14)0.0204 (5)
H5A0.09961.27580.12420.025*
C5'0.41357 (15)1.10398 (17)0.44375 (14)0.0195 (5)
H5'A0.39471.17520.45850.023*
H5'B0.46671.08440.48730.023*
C6'0.43971 (15)1.10504 (16)0.35013 (14)0.0174 (4)
C60.18739 (15)1.17817 (17)0.19652 (14)0.0199 (5)
H6A0.21691.23170.23310.024*
O7'0.47639 (10)1.00155 (11)0.33619 (9)0.0176 (3)
C70.57397 (15)0.63171 (16)0.17660 (13)0.0172 (4)
C80.50484 (15)0.55495 (17)0.17660 (14)0.0189 (5)
H8A0.45240.55910.13340.023*
C8'0.50635 (15)0.99104 (17)0.24987 (14)0.0185 (5)
H8'A0.45421.00450.20210.022*
C9'0.58166 (15)1.07096 (17)0.24148 (15)0.0216 (5)
H9'A0.60081.06340.18330.026*
H9'B0.63431.05730.28750.026*
C90.51259 (16)0.47299 (17)0.23927 (14)0.0210 (5)
H9A0.46570.42310.23740.025*
C100.58946 (16)0.46522 (18)0.30429 (15)0.0225 (5)
H10A0.59400.41100.34700.027*
C10'0.54654 (16)1.18395 (17)0.25179 (14)0.0212 (5)
H10'A0.49931.20080.20120.025*
H10'B0.59631.23460.25230.025*
C11'0.50739 (15)1.19351 (17)0.33940 (14)0.0193 (5)
H11'A0.55731.19130.38980.023*
H11'B0.47701.26210.34060.023*
C110.66025 (17)0.53891 (19)0.30570 (15)0.0253 (5)
H11A0.71280.53310.34860.030*
C120.65222 (16)0.62106 (18)0.24300 (15)0.0233 (5)
H12A0.69970.67020.24490.028*
C130.44029 (15)0.74260 (17)0.03190 (13)0.0186 (4)
C140.41471 (16)0.66001 (18)−0.03071 (14)0.0231 (5)
H14A0.45750.6079−0.03860.028*
C150.32729 (17)0.65419 (19)−0.08109 (15)0.0265 (5)
H15A0.31230.5998−0.12290.032*
C160.26269 (17)0.7308 (2)−0.06812 (15)0.0286 (6)
H16A0.20400.7274−0.10140.034*
C170.28483 (16)0.8121 (2)−0.00618 (16)0.0277 (5)
H17A0.24090.86230.00300.033*
C180.37312 (16)0.81829 (18)0.04222 (15)0.0232 (5)
H18A0.38800.87420.08260.028*
C190.63144 (17)0.87945 (18)−0.02047 (15)0.0259 (5)
H19A0.67690.8915−0.05800.039*
H19B0.63500.93500.02380.039*
H19C0.57170.8798−0.05660.039*
C200.74439 (16)0.7706 (2)0.08381 (16)0.0269 (5)
H20A0.78960.78060.04560.040*
H20B0.75490.70370.11490.040*
H20C0.74860.82780.12670.040*
C220.64860 (15)0.77039 (17)0.02668 (14)0.0189 (5)
C230.64515 (17)0.68136 (18)−0.04386 (15)0.0257 (5)
H23A0.69220.6932−0.07970.039*
H23B0.58630.6818−0.08180.039*
H23C0.65480.6134−0.01420.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si0.0173 (3)0.0145 (3)0.0176 (3)−0.0002 (2)0.0056 (2)−0.0012 (2)
O1'0.0150 (8)0.0180 (8)0.0192 (7)−0.0014 (6)0.0034 (6)0.0004 (6)
O1''0.0240 (9)0.0181 (8)0.0197 (7)−0.0022 (6)0.0095 (7)−0.0046 (6)
O20.0260 (9)0.0176 (8)0.0308 (9)0.0007 (7)0.0003 (7)−0.0006 (7)
O40.0294 (9)0.0247 (9)0.0235 (8)0.0001 (7)−0.0029 (7)0.0028 (7)
O7'0.0206 (8)0.0159 (7)0.0179 (7)0.0016 (6)0.0075 (6)−0.0022 (6)
N10.0160 (9)0.0184 (9)0.0194 (9)0.0006 (7)0.0028 (7)−0.0002 (7)
N30.0227 (10)0.0192 (9)0.0193 (9)−0.0011 (8)0.0027 (8)−0.0020 (8)
C1''0.0256 (12)0.0199 (11)0.0183 (10)0.0031 (9)0.0076 (9)−0.0003 (9)
C20.0177 (11)0.0215 (11)0.0185 (10)−0.0007 (9)0.0066 (9)−0.0003 (9)
C2'0.0186 (11)0.0159 (10)0.0198 (10)0.0005 (9)0.0038 (9)0.0011 (8)
C3'0.0187 (11)0.0202 (11)0.0237 (11)−0.0013 (9)0.0076 (9)0.0020 (9)
C4'0.0206 (12)0.0216 (11)0.0181 (10)0.0015 (9)0.0069 (9)0.0004 (9)
C40.0217 (12)0.0226 (12)0.0190 (11)−0.0001 (9)0.0062 (9)0.0052 (9)
C50.0223 (12)0.0174 (11)0.0226 (11)0.0021 (9)0.0068 (9)0.0039 (9)
C5'0.0217 (12)0.0193 (11)0.0185 (10)0.0024 (9)0.0058 (9)−0.0021 (9)
C6'0.0172 (11)0.0162 (10)0.0187 (10)0.0017 (9)0.0031 (9)−0.0016 (8)
C60.0208 (12)0.0169 (11)0.0231 (11)−0.0017 (9)0.0070 (9)0.0006 (9)
C70.0197 (11)0.0166 (10)0.0166 (10)0.0010 (9)0.0068 (9)−0.0025 (8)
C80.0159 (11)0.0200 (11)0.0213 (11)0.0006 (9)0.0049 (9)−0.0013 (9)
C8'0.0223 (12)0.0183 (11)0.0161 (10)0.0016 (9)0.0062 (9)−0.0016 (8)
C9'0.0205 (12)0.0216 (11)0.0243 (11)−0.0017 (9)0.0084 (10)−0.0028 (9)
C90.0207 (12)0.0185 (11)0.0255 (11)−0.0028 (9)0.0086 (10)−0.0009 (9)
C100.0297 (13)0.0174 (11)0.0212 (11)0.0009 (10)0.0068 (10)0.0024 (9)
C10'0.0224 (12)0.0192 (11)0.0226 (11)−0.0058 (9)0.0057 (9)−0.0012 (9)
C11'0.0188 (11)0.0176 (11)0.0220 (11)−0.0016 (9)0.0047 (9)−0.0021 (9)
C110.0246 (13)0.0271 (12)0.0228 (11)−0.0010 (10)−0.0006 (10)0.0015 (10)
C120.0248 (13)0.0211 (11)0.0243 (11)−0.0040 (10)0.0048 (10)−0.0010 (9)
C130.0197 (11)0.0191 (11)0.0176 (10)−0.0015 (9)0.0046 (9)0.0028 (9)
C140.0244 (13)0.0227 (12)0.0235 (11)−0.0017 (10)0.0073 (10)−0.0022 (9)
C150.0304 (14)0.0299 (13)0.0188 (11)−0.0105 (11)0.0032 (10)−0.0003 (10)
C160.0213 (12)0.0390 (15)0.0237 (11)−0.0044 (11)−0.0017 (10)0.0105 (11)
C170.0215 (13)0.0299 (13)0.0311 (13)0.0053 (10)0.0030 (10)0.0044 (11)
C180.0259 (13)0.0207 (11)0.0235 (11)0.0020 (10)0.0052 (10)0.0021 (9)
C190.0322 (14)0.0227 (12)0.0254 (12)−0.0005 (10)0.0122 (10)0.0013 (10)
C200.0210 (12)0.0334 (14)0.0275 (12)−0.0019 (10)0.0077 (10)0.0027 (10)
C220.0186 (11)0.0192 (11)0.0203 (10)−0.0003 (9)0.0074 (9)−0.0001 (9)
C230.0292 (14)0.0229 (12)0.0282 (12)0.0009 (10)0.0139 (11)−0.0030 (10)

Geometric parameters (Å, °)

Si—O1''1.6491 (15)C8'—C9'1.518 (3)
Si—C131.875 (2)C8'—H8'A0.9800
Si—C71.878 (2)C9'—C10'1.523 (3)
Si—C221.891 (2)C9'—H9'A0.9700
O1'—C2'1.425 (2)C9'—H9'B0.9700
O1'—C6'1.442 (3)C9—C101.379 (3)
O1''—C1''1.428 (2)C9—H9A0.9300
O2—C21.220 (3)C10—C111.393 (3)
O4—C41.229 (3)C10—H10A0.9300
O7'—C6'1.433 (2)C10'—C11'1.533 (3)
O7'—C8'1.449 (2)C10'—H10'A0.9700
N1—C61.380 (3)C10'—H10'B0.9700
N1—C21.393 (3)C11'—H11'A0.9700
N1—C2'1.472 (3)C11'—H11'B0.9700
N3—C21.381 (3)C11—C121.389 (3)
N3—C41.388 (3)C11—H11A0.9300
N3—H3A0.8600C12—H12A0.9300
C1''—C8'1.512 (3)C13—C181.400 (3)
C1''—H1''A0.9700C13—C141.409 (3)
C1''—H1''B0.9700C14—C151.391 (3)
C2'—C3'1.516 (3)C14—H14A0.9300
C2'—H2'A0.9800C15—C161.390 (3)
C3'—C4'1.528 (3)C15—H15A0.9300
C3'—H3'A0.9700C16—C171.384 (3)
C3'—H3'B0.9700C16—H16A0.9300
C4'—C5'1.526 (3)C17—C181.391 (3)
C4'—H4'A0.9700C17—H17A0.9300
C4'—H4'B0.9700C18—H18A0.9300
C4—C51.445 (3)C19—C221.540 (3)
C5—C61.341 (3)C19—H19A0.9600
C5—H5A0.9300C19—H19B0.9600
C5'—C6'1.525 (3)C19—H19C0.9600
C5'—H5'A0.9700C20—C221.534 (3)
C5'—H5'B0.9700C20—H20A0.9600
C6'—C11'1.519 (3)C20—H20B0.9600
C6—H6A0.9300C20—H20C0.9600
C7—C81.403 (3)C22—C231.536 (3)
C7—C121.408 (3)C23—H23A0.9600
C8—C91.387 (3)C23—H23B0.9600
C8—H8A0.9300C23—H23C0.9600
O1''—Si—C13110.29 (9)C9'—C8'—H8'A109.0
O1''—Si—C7108.65 (8)C8'—C9'—C10'109.60 (18)
C13—Si—C7107.79 (10)C8'—C9'—H9'A109.8
O1''—Si—C22102.72 (9)C10'—C9'—H9'A109.8
C13—Si—C22111.66 (9)C8'—C9'—H9'B109.8
C7—Si—C22115.59 (10)C10'—C9'—H9'B109.8
C2'—O1'—C6'112.48 (15)H9'A—C9'—H9'B108.2
C1''—O1''—Si126.65 (13)C10—C9—C8120.3 (2)
C6'—O7'—C8'113.14 (15)C10—C9—H9A119.9
C6—N1—C2121.73 (18)C8—C9—H9A119.9
C6—N1—C2'120.30 (17)C9—C10—C11119.7 (2)
C2—N1—C2'117.74 (17)C9—C10—H10A120.2
C2—N3—C4127.16 (19)C11—C10—H10A120.2
C2—N3—H3A116.4C9'—C10'—C11'110.13 (18)
C4—N3—H3A116.4C9'—C10'—H10'A109.6
O1''—C1''—C8'107.92 (17)C11'—C10'—H10'A109.6
O1''—C1''—H1''A110.1C9'—C10'—H10'B109.6
C8'—C1''—H1''A110.1C11'—C10'—H10'B109.6
O1''—C1''—H1''B110.1H10'A—C10'—H10'B108.1
C8'—C1''—H1''B110.1C6'—C11'—C10'112.58 (17)
H1''A—C1''—H1''B108.4C6'—C11'—H11'A109.1
O2—C2—N3122.6 (2)C10'—C11'—H11'A109.1
O2—C2—N1123.0 (2)C6'—C11'—H11'B109.1
N3—C2—N1114.42 (19)C10'—C11'—H11'B109.1
O1'—C2'—N1105.77 (16)H11'A—C11'—H11'B107.8
O1'—C2'—C3'111.57 (17)C12—C11—C10119.9 (2)
N1—C2'—C3'112.05 (17)C12—C11—H11A120.0
O1'—C2'—H2'A109.1C10—C11—H11A120.0
N1—C2'—H2'A109.1C11—C12—C7121.6 (2)
C3'—C2'—H2'A109.1C11—C12—H12A119.2
C2'—C3'—C4'109.02 (18)C7—C12—H12A119.2
C2'—C3'—H3'A109.9C18—C13—C14116.9 (2)
C4'—C3'—H3'A109.9C18—C13—Si120.88 (17)
C2'—C3'—H3'B109.9C14—C13—Si122.19 (17)
C4'—C3'—H3'B109.9C15—C14—C13121.9 (2)
H3'A—C3'—H3'B108.3C15—C14—H14A119.0
C5'—C4'—C3'109.21 (17)C13—C14—H14A119.0
C5'—C4'—H4'A109.8C16—C15—C14119.1 (2)
C3'—C4'—H4'A109.8C16—C15—H15A120.5
C5'—C4'—H4'B109.8C14—C15—H15A120.5
C3'—C4'—H4'B109.8C17—C16—C15120.7 (2)
H4'A—C4'—H4'B108.3C17—C16—H16A119.7
O4—C4—N3120.0 (2)C15—C16—H16A119.7
O4—C4—C5125.8 (2)C16—C17—C18119.6 (2)
N3—C4—C5114.18 (19)C16—C17—H17A120.2
C6—C5—C4120.3 (2)C18—C17—H17A120.2
C6—C5—H5A119.9C17—C18—C13121.8 (2)
C4—C5—H5A119.9C17—C18—H18A119.1
C6'—C5'—C4'111.68 (17)C13—C18—H18A119.1
C6'—C5'—H5'A109.3C22—C19—H19A109.5
C4'—C5'—H5'A109.3C22—C19—H19B109.5
C6'—C5'—H5'B109.3H19A—C19—H19B109.5
C4'—C5'—H5'B109.3C22—C19—H19C109.5
H5'A—C5'—H5'B107.9H19A—C19—H19C109.5
O7'—C6'—O1'109.20 (16)H19B—C19—H19C109.5
O7'—C6'—C11'111.75 (17)C22—C20—H20A109.5
O1'—C6'—C11'106.17 (16)C22—C20—H20B109.5
O7'—C6'—C5'106.73 (16)H20A—C20—H20B109.5
O1'—C6'—C5'110.88 (17)C22—C20—H20C109.5
C11'—C6'—C5'112.14 (17)H20A—C20—H20C109.5
C5—C6—N1122.0 (2)H20B—C20—H20C109.5
C5—C6—H6A119.0C20—C22—C23108.30 (19)
N1—C6—H6A119.0C20—C22—C19108.97 (19)
C8—C7—C12116.7 (2)C23—C22—C19109.75 (18)
C8—C7—Si121.68 (17)C20—C22—Si110.46 (14)
C12—C7—Si121.27 (16)C23—C22—Si111.55 (15)
C9—C8—C7121.8 (2)C19—C22—Si107.78 (15)
C9—C8—H8A119.1C22—C23—H23A109.5
C7—C8—H8A119.1C22—C23—H23B109.5
O7'—C8'—C1''105.03 (16)H23A—C23—H23B109.5
O7'—C8'—C9'110.61 (17)C22—C23—H23C109.5
C1''—C8'—C9'114.08 (19)H23A—C23—H23C109.5
O7'—C8'—H8'A109.0H23B—C23—H23C109.5
C1''—C8'—H8'A109.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.032.873 (2)166

Symmetry codes: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2075).

References

  • Brimble, M. A., Fares, F. A. & Turner, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 677–684.
  • Brimble, M. A., Robinson, J. E., Choi, K. W. & Woodgate, P. D. (2004). Aust. J. Chem.57, 665–668.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mead, K. T. & Zemribo, R. (1996). Synlett, 11, 1063–1064.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography