PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m540.
Published online 2008 March 14. doi:  10.1107/S1600536808006569
PMCID: PMC2961010

Tetra­kis[3-(2-pyridylamino)pyridine-κN]nickel(II) diperchlorate ethanol disolvate

Abstract

In the title compound, [Ni(C10H9N3)4](ClO4)2·2C2H5OH, the metal centre exhibits a four-coordinated environment with four pyridine N atoms of the four different dipyridylamine ligands. A twofold rotation axis passes through the Ni atom. N—H(...)O and N—H(...)N hydrogen bonds are present in the crystal structure.

Related literature

For related literature, see: Moulton & Zaworotko (2001 [triangle]); Su et al. (2003 [triangle]); Zhou et al. (2006 [triangle]); Biradha et al. (1999 [triangle]); Gudbjartson et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m540-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H9N3)4](ClO4)2·2C2H6O
  • M r = 1034.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m540-efi1.jpg
  • a = 27.767 (4) Å
  • b = 10.7067 (14) Å
  • c = 18.144 (2) Å
  • β = 115.891 (9)°
  • V = 4852.6 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 298 (2) K
  • 0.32 × 0.22 × 0.17 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.836, T max = 0.908
  • 11042 measured reflections
  • 4315 independent reflections
  • 2875 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.134
  • S = 1.08
  • 4315 reflections
  • 314 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006569/at2548sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006569/at2548Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Shuren University for financial support.

supplementary crystallographic information

Comment

In recent years, the rational design and assembly of metal-organic frameworks (MOFs) with well regulated network structures have received remarkable attention in order to develop new functional materials with potential applications (Moulton & Zaworotko, 2001). Nevertheless, it is still a great challenge to predict the exact structures and compositions of polymeric compounds assembled in a helical motif, although some structures with various helices have been reported in MOFs. So far, much of the research has been concentrated on the exploitation of angular ligands with a molecular angle, such as ligands with a T-shape, V-shape etc, in the construction of versatile coordination polymer architectures (Gudbjartson et al., 1999; Su et al., 2003, Zhou et al., 2006). In this paper, we report the synthesis and crystal structure of the title complex with a V-shaped ligand,(I).

As shown in Fig. 1, the complex I is located twofold axis via the 2,3'-dipyridylamine (L) ligands. That I is a neutral, mononuclear molecule with the Ni(II) atom in a square coordination geometry with four pyridine nitrogen atoms of the four different L ligands. The Ni—N bond lengths range from 2.013 (2) to 2.019 (2)Å (Table1), and the N(1)—Ni—N(4) angle is 179.09 (11)°, it can be seen that the Ni(II) ions together with the four nitrogen atoms form a perfect square geometry, and this ideal quadrangle structure is rare in the coordination geometry of Ni(II) atom. Four L ligands present monodenate fashion. Two O atoms of the uncoordinated ClO4 anions form the acceptors of intermolecular hydrogen bonds and weak interactions, which link the discrete units to form a two-dimensional supramolecular structure. The ethanol molecule present in I only functioned as an acceptor of intramolecular hydrogen bonds between the oxygen atoms of ethonal and amino nitrogen atoms of the ligand (Table 2), which stabilize the extended structure.

Experimental

NiClO4 (0.027 g, 0.013 mmol), L (0.025 g, 0.014 mmol) were added in a solvent of methanol, the mixture was heated for 6 h under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Two weeks later some single crystals of the size suitable for X-Ray diffraction analysis.

Refinement

The H atoms (pyridine ring) were placed in calculated positions [C—H = 0.93 - 0.97 Å and N—H = 0.86 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of (I), showing 30% probability displacement ellipsoids [symmetrical code: (i) -x, y, 1/2 - z].

Crystal data

[Ni(C10H9N3)4](ClO4)2·2C2H6OF000 = 2152
Mr = 1034.55Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4315 reflections
a = 27.767 (4) Åθ = 1.6–25.1º
b = 10.7067 (14) ŵ = 0.58 mm1
c = 18.144 (2) ÅT = 298 (2) K
β = 115.891 (9)ºBlock, green
V = 4852.6 (11) Å30.32 × 0.22 × 0.17 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer4315 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
T = 298(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −33→33
Tmin = 0.836, Tmax = 0.908k = −12→12
11042 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.134  w = 1/[σ2(Fo2) + (0.0501P)2 + 1.1196P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.084
4315 reflectionsΔρmax = 0.35 e Å3
314 parametersΔρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.23720 (5)0.75000.0397 (2)
N10.54118 (10)0.1032 (2)0.72421 (16)0.0455 (6)
N20.60983 (11)−0.1938 (3)0.80972 (17)0.0586 (8)
H20.6337−0.23490.80160.070*
N30.56191 (11)−0.1786 (3)0.88745 (18)0.0577 (7)
N40.54239 (10)0.3700 (2)0.72509 (16)0.0438 (6)
N50.68140 (10)0.4606 (3)0.79766 (17)0.0550 (7)
H5B0.69450.39230.82370.066*
N60.69860 (11)0.6684 (3)0.77848 (18)0.0574 (7)
C10.56303 (12)0.0085 (3)0.77601 (19)0.0456 (8)
H10.56210.01040.82670.055*
C20.58706 (13)−0.0930 (3)0.7574 (2)0.0474 (8)
C30.58891 (14)−0.0912 (3)0.6822 (2)0.0547 (9)
H30.6051−0.15660.66770.066*
C40.56711 (14)0.0061 (3)0.6297 (2)0.0565 (9)
H40.56840.00730.57940.068*
C50.54302 (13)0.1029 (3)0.6514 (2)0.0515 (8)
H50.52790.16870.61520.062*
C60.59913 (15)−0.2364 (3)0.8729 (2)0.0544 (9)
C70.62701 (16)−0.3403 (4)0.9173 (2)0.0682 (11)
H70.6529−0.37910.90580.082*
C80.61504 (17)−0.3838 (4)0.9787 (2)0.0757 (11)
H80.6324−0.45401.00890.091*
C90.57742 (17)−0.3231 (4)0.9951 (2)0.0720 (11)
H90.5692−0.35021.03690.086*
C100.55247 (15)−0.2224 (4)0.9489 (2)0.0643 (10)
H100.5272−0.18120.96060.077*
C110.59564 (12)0.3773 (3)0.76688 (19)0.0437 (7)
H110.61270.32290.81060.052*
C120.62665 (12)0.4614 (3)0.74861 (19)0.0426 (7)
C130.60115 (12)0.5367 (3)0.6812 (2)0.0477 (8)
H130.62080.59040.66450.057*
C140.54629 (13)0.5316 (3)0.6387 (2)0.0525 (8)
H140.52850.58410.59420.063*
C150.51777 (13)0.4489 (3)0.6622 (2)0.0515 (8)
H150.48060.44750.63390.062*
C160.71742 (12)0.5563 (3)0.8097 (2)0.0480 (8)
C170.77153 (13)0.5330 (4)0.8563 (2)0.0653 (10)
H170.78350.45420.87840.078*
C180.80698 (16)0.6289 (5)0.8690 (3)0.0827 (13)
H180.84340.61630.90070.099*
C190.78839 (18)0.7437 (4)0.8349 (3)0.0815 (13)
H190.81180.80940.84150.098*
C200.73503 (16)0.7584 (4)0.7913 (3)0.0701 (11)
H200.72260.83660.76860.084*
Cl10.39899 (4)0.22782 (8)0.51603 (5)0.0580 (3)
O10.42456 (13)0.2385 (3)0.60132 (16)0.0903 (10)
O20.43498 (15)0.2706 (3)0.4854 (2)0.1180 (13)
O30.38628 (16)0.1017 (3)0.4956 (2)0.1268 (14)
O40.35263 (17)0.2973 (5)0.4863 (4)0.196 (2)
O50.7269 (3)0.2376 (3)0.8974 (3)0.166 (2)
H5A0.70750.25710.91900.249*
C210.7270 (3)0.0252 (6)0.9344 (4)0.143 (2)
H21A0.75320.05530.98630.215*
H21B0.7396−0.05060.92060.215*
H21C0.69400.00940.93780.215*
C220.7186 (3)0.1150 (6)0.8741 (4)0.151 (3)
H22A0.74160.09480.84820.181*
H22B0.68190.10680.83270.181*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0470 (3)0.0271 (3)0.0562 (4)0.0000.0329 (3)0.000
N10.0539 (16)0.0367 (15)0.0564 (16)0.0018 (12)0.0340 (14)0.0022 (13)
N20.070 (2)0.0493 (17)0.0644 (19)0.0226 (15)0.0365 (17)0.0081 (15)
N30.0660 (19)0.0489 (18)0.0645 (19)0.0046 (14)0.0344 (17)0.0068 (15)
N40.0470 (16)0.0328 (14)0.0556 (16)0.0043 (12)0.0261 (14)0.0038 (13)
N50.0428 (16)0.0420 (16)0.071 (2)0.0045 (12)0.0166 (15)0.0154 (14)
N60.0506 (17)0.0438 (18)0.073 (2)−0.0016 (14)0.0221 (16)0.0044 (15)
C10.057 (2)0.0342 (17)0.0531 (19)0.0017 (15)0.0311 (17)0.0019 (16)
C20.0508 (19)0.0390 (18)0.058 (2)0.0035 (15)0.0285 (17)−0.0007 (16)
C30.065 (2)0.046 (2)0.064 (2)0.0063 (17)0.0384 (19)−0.0056 (18)
C40.072 (2)0.052 (2)0.059 (2)0.0061 (18)0.041 (2)0.0009 (18)
C50.063 (2)0.046 (2)0.058 (2)0.0033 (16)0.0376 (18)0.0063 (17)
C60.061 (2)0.044 (2)0.054 (2)0.0017 (17)0.0212 (18)−0.0013 (17)
C70.079 (3)0.054 (2)0.068 (3)0.017 (2)0.029 (2)0.011 (2)
C80.086 (3)0.056 (3)0.065 (3)0.003 (2)0.014 (2)0.012 (2)
C90.075 (3)0.075 (3)0.059 (2)−0.012 (2)0.023 (2)0.014 (2)
C100.061 (2)0.069 (3)0.065 (2)−0.0037 (19)0.029 (2)0.006 (2)
C110.045 (2)0.0372 (18)0.0494 (19)0.0069 (14)0.0213 (16)0.0081 (15)
C120.0455 (18)0.0325 (16)0.0498 (18)0.0019 (13)0.0208 (16)0.0001 (14)
C130.051 (2)0.0383 (18)0.054 (2)−0.0073 (15)0.0230 (17)0.0052 (16)
C140.048 (2)0.0414 (19)0.057 (2)−0.0002 (15)0.0123 (17)0.0124 (16)
C150.0446 (19)0.0412 (19)0.063 (2)−0.0004 (15)0.0184 (17)0.0032 (17)
C160.0405 (18)0.047 (2)0.056 (2)−0.0021 (15)0.0204 (16)−0.0038 (16)
C170.043 (2)0.061 (2)0.079 (3)0.0068 (17)0.0141 (19)0.003 (2)
C180.043 (2)0.095 (4)0.101 (3)−0.008 (2)0.024 (2)−0.006 (3)
C190.064 (3)0.077 (3)0.096 (3)−0.026 (2)0.029 (3)−0.005 (3)
C200.067 (3)0.054 (2)0.078 (3)−0.0135 (19)0.022 (2)0.006 (2)
Cl10.0655 (6)0.0541 (6)0.0529 (5)−0.0062 (4)0.0243 (5)−0.0040 (4)
O10.104 (2)0.120 (3)0.0521 (16)−0.0282 (18)0.0392 (17)−0.0173 (15)
O20.150 (3)0.146 (3)0.084 (2)−0.053 (2)0.076 (2)0.000 (2)
O30.183 (4)0.082 (2)0.152 (3)−0.060 (2)0.106 (3)−0.062 (2)
O40.095 (3)0.162 (4)0.274 (6)0.057 (3)0.026 (4)0.053 (4)
O50.221 (6)0.067 (2)0.128 (4)0.010 (3)0.001 (3)0.019 (2)
C210.189 (7)0.092 (4)0.147 (6)−0.001 (4)0.072 (5)0.004 (4)
C220.187 (7)0.080 (4)0.129 (5)−0.028 (4)0.017 (5)0.013 (4)

Geometric parameters (Å, °)

Ni1—N1i2.013 (2)C9—C101.356 (5)
Ni1—N12.013 (2)C9—H90.9300
Ni1—N42.019 (2)C10—H100.9300
Ni1—N4i2.019 (2)C11—C121.382 (4)
N1—C11.335 (4)C11—H110.9300
N1—C51.344 (4)C12—C131.375 (4)
N2—C61.382 (4)C13—C141.375 (4)
N2—C21.393 (4)C13—H130.9300
N2—H20.8600C14—C151.373 (4)
N3—C61.326 (4)C14—H140.9300
N3—C101.336 (4)C15—H150.9300
N4—C111.337 (4)C16—C171.388 (5)
N4—C151.342 (4)C17—C181.371 (5)
N5—C161.381 (4)C17—H170.9300
N5—C121.386 (4)C18—C191.371 (6)
N5—H5B0.8600C18—H180.9300
N6—C161.332 (4)C19—C201.350 (6)
N6—C201.342 (4)C19—H190.9300
C1—C21.392 (4)C20—H200.9300
C1—H10.9300Cl1—O41.377 (4)
C2—C31.388 (4)Cl1—O11.397 (3)
C3—C41.362 (5)Cl1—O31.404 (3)
C3—H30.9300Cl1—O21.415 (3)
C4—C51.381 (4)O5—C221.368 (6)
C4—H40.9300O5—H5A0.8200
C5—H50.9300C21—C221.397 (7)
C6—C71.394 (5)C21—H21A0.9600
C7—C81.376 (5)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C8—C91.369 (5)C22—H22A0.9700
C8—H80.9300C22—H22B0.9700
N1i—Ni1—N189.08 (14)N4—C11—C12123.5 (3)
N1i—Ni1—N4179.09 (11)N4—C11—H11118.2
N1—Ni1—N490.24 (10)C12—C11—H11118.2
N1i—Ni1—N4i90.24 (10)C13—C12—C11117.5 (3)
N1—Ni1—N4i179.09 (11)C13—C12—N5124.7 (3)
N4—Ni1—N4i90.44 (13)C11—C12—N5117.7 (3)
C1—N1—C5119.3 (3)C12—C13—C14119.3 (3)
C1—N1—Ni1120.49 (19)C12—C13—H13120.4
C5—N1—Ni1120.0 (2)C14—C13—H13120.4
C6—N2—C2128.5 (3)C15—C14—C13120.0 (3)
C6—N2—H2115.7C15—C14—H14120.0
C2—N2—H2115.7C13—C14—H14120.0
C6—N3—C10117.1 (3)N4—C15—C14121.4 (3)
C11—N4—C15118.2 (3)N4—C15—H15119.3
C11—N4—Ni1121.5 (2)C14—C15—H15119.3
C15—N4—Ni1120.2 (2)N6—C16—N5118.6 (3)
C16—N5—C12127.8 (3)N6—C16—C17122.7 (3)
C16—N5—H5B116.1N5—C16—C17118.7 (3)
C12—N5—H5B116.1C18—C17—C16118.4 (4)
C16—N6—C20116.6 (3)C18—C17—H17120.8
N1—C1—C2122.8 (3)C16—C17—H17120.8
N1—C1—H1118.6C17—C18—C19119.6 (4)
C2—C1—H1118.6C17—C18—H18120.2
C3—C2—C1117.0 (3)C19—C18—H18120.2
C3—C2—N2118.7 (3)C20—C19—C18118.0 (4)
C1—C2—N2124.3 (3)C20—C19—H19121.0
C4—C3—C2120.2 (3)C18—C19—H19121.0
C4—C3—H3119.9N6—C20—C19124.7 (4)
C2—C3—H3119.9N6—C20—H20117.7
C3—C4—C5119.8 (3)C19—C20—H20117.7
C3—C4—H4120.1O4—Cl1—O1109.0 (3)
C5—C4—H4120.1O4—Cl1—O3109.4 (3)
N1—C5—C4120.9 (3)O1—Cl1—O3108.6 (2)
N1—C5—H5119.6O4—Cl1—O2111.8 (3)
C4—C5—H5119.6O1—Cl1—O2107.7 (2)
N3—C6—N2118.7 (3)O3—Cl1—O2110.3 (2)
N3—C6—C7122.8 (3)C22—O5—H5A109.5
N2—C6—C7118.5 (3)C22—C21—H21A109.5
C8—C7—C6118.0 (4)C22—C21—H21B109.5
C8—C7—H7121.0H21A—C21—H21B109.5
C6—C7—H7121.0C22—C21—H21C109.5
C9—C8—C7119.5 (4)H21A—C21—H21C109.5
C9—C8—H8120.3H21B—C21—H21C109.5
C7—C8—H8120.3O5—C22—C21118.1 (6)
C10—C9—C8118.4 (4)O5—C22—H22A107.8
C10—C9—H9120.8C21—C22—H22A107.8
C8—C9—H9120.8O5—C22—H22B107.8
N3—C10—C9124.2 (4)C21—C22—H22B107.8
N3—C10—H10117.9H22A—C22—H22B107.1
C9—C10—H10117.9
N1i—Ni1—N1—C1−48.8 (2)C6—C7—C8—C9−1.2 (6)
N4—Ni1—N1—C1130.6 (2)C7—C8—C9—C101.0 (6)
N1i—Ni1—N1—C5125.6 (3)C6—N3—C10—C9−1.8 (6)
N4—Ni1—N1—C5−55.0 (3)C8—C9—C10—N30.5 (6)
N1—Ni1—N4—C11−59.8 (2)C15—N4—C11—C12−0.2 (4)
N4i—Ni1—N4—C11120.8 (3)Ni1—N4—C11—C12175.7 (2)
N1—Ni1—N4—C15116.0 (2)N4—C11—C12—C13−3.4 (4)
N4i—Ni1—N4—C15−63.4 (2)N4—C11—C12—N5179.0 (3)
C5—N1—C1—C2−1.2 (5)C16—N5—C12—C1325.5 (5)
Ni1—N1—C1—C2173.2 (2)C16—N5—C12—C11−157.0 (3)
N1—C1—C2—C31.7 (5)C11—C12—C13—C144.5 (4)
N1—C1—C2—N2−179.5 (3)N5—C12—C13—C14−178.0 (3)
C6—N2—C2—C3−157.8 (3)C12—C13—C14—C15−2.2 (5)
C6—N2—C2—C123.3 (6)C11—N4—C15—C142.7 (4)
C1—C2—C3—C4−0.9 (5)Ni1—N4—C15—C14−173.3 (2)
N2—C2—C3—C4−179.9 (3)C13—C14—C15—N4−1.5 (5)
C2—C3—C4—C5−0.2 (5)C20—N6—C16—N5−179.7 (3)
C1—N1—C5—C40.0 (5)C20—N6—C16—C172.8 (5)
Ni1—N1—C5—C4−174.4 (2)C12—N5—C16—N67.6 (5)
C3—C4—C5—N10.6 (5)C12—N5—C16—C17−174.8 (3)
C10—N3—C6—N2179.8 (3)N6—C16—C17—C18−1.5 (5)
C10—N3—C6—C71.5 (5)N5—C16—C17—C18−179.0 (3)
C2—N2—C6—N31.4 (6)C16—C17—C18—C19−0.9 (6)
C2—N2—C6—C7179.8 (3)C17—C18—C19—C201.8 (7)
N3—C6—C7—C8−0.1 (6)C16—N6—C20—C19−1.9 (6)
N2—C6—C7—C8−178.4 (3)C18—C19—C20—N6−0.4 (7)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5B···O50.862.072.928 (5)174
N2—H2···N6ii0.862.273.129 (4)176

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2548).

References

  • Biradha, K., Seward, C. M. & Zaworotko, J. (1999). Angew. Chem. Int. Ed.1999, 38, 492–495.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Gudbjartson, H., Biradha, K., Poirier, K. & Zaworotko, M. J. (1999). J. Am. Chem. Soc.121, 2599–2600.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & Loye, H. C. (2003). J. Am. Chem. Soc.125, 8595–8613. [PubMed]
  • Zhou, C. H., Wang, Y. Y., Li, D. S., Zhou, L. J., Liu, P. & Shi, Q. Z. (2006). Eur. J. Inorg. Chem. pp. 2437–2446.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography