PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o739.
Published online 2008 March 29. doi:  10.1107/S1600536808007356
PMCID: PMC2961005

Ethyl 2-[(Z)-3-chloro­benzyl­idene]-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

Abstract

In the title compound, C23H19ClN2O3S, the central pyrimidine ring is significantly puckered, assuming almost a screw boat conformation. In addition to the usual inter­molecular C—H(...)O hydrogen bonding, short intra­molecular C—H(...)S contacts and π–π stacking inter­actions [centroid–centroid distance = 3.762 (2) Å] contribute to the crystal packing.

Related literature

For the crystal structures of similar compounds, see: Jotani & Baldaniya (2006 [triangle], 2007 [triangle]); Sridhar et al., (2006 [triangle]); Fischer et al. (2007 [triangle]). For the biological activities, see: Kappe (2000 [triangle]); Rovnyak et al. (1995 [triangle]); Monks et al. (1991 [triangle]); Winter et al. (1962 [triangle]). For related literature, see: Allen, (2002 [triangle]); Bernstein et al. (1995 [triangle]); Cremer & Pople, (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o739-scheme1.jpg

Experimental

Crystal data

  • C23H19ClN2O3S
  • M r = 438.92
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o739-efi2.jpg
  • a = 8.2650 (3) Å
  • b = 10.3291 (4) Å
  • c = 13.5655 (5) Å
  • α = 94.129 (2)°
  • β = 100.837 (2)°
  • γ = 111.812 (2)°
  • V = 1043.15 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 293 (2) K
  • 0.47 × 0.35 × 0.2 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.867, T max = 0.936
  • 18826 measured reflections
  • 3677 independent reflections
  • 3111 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.124
  • S = 1.06
  • 3677 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007356/rk2081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007356/rk2081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India, for the intensity data collection.

supplementary crystallographic information

Comment

The remarkable biological activties of fused pyrimidines such as antiviral, antitumor, anticancer, antiinflammatory, antihypertensive etc. (Kappe, 2000; Rovnyak et al., 1995) bring this class of heterocyclic compounds of significant pharmacological interest. The title thiazolo [3,2-a] pyrimidine compound, (I), possesses anticancer and antiinflammatory activity. The anticancer drug screen is carried out using a diverse panel of cultured human tumor cell lines (Monks et al., 1991). The anti-inflammatory activity is determined by inhibition in the Carageena-induced rat paw edema method (Winter et al., 1962). In view of these properties and to study the effect of chlorine substituent at different positions of benzene ring on crystal packing, the crystal structure of I has been determined.

On Fig. 1 is shown the molecular structure of I with the atom numbering scheme. The pyrimidine ring adopts almost a screw boat conformation as indicated by the ring puckering parameters [q2 = 0.175 (2)Å, q3 = 0.077 (2)Å, θ = 66.2 (6)° and [var phi] = 173.1 (7)°; Cremer & Pople, 1975]. The idealized values for the screw boat conformation are: θ = 67.5° and [var phi] = (60k + 30)°, where k is an integer. The asymmetry parameters also support this information. All bond lengths and angles in the pyrimidine ring have normal values. The fused thiazole ring has usual geometry as observed in other fused thiazolopyrimidine compounds (Jotani & Baldaniya, 2006, 2007; Sridhar et al., 2006). The thiazole ring makes dihedral angles of 89.06 (11) and 6.56 (10)° with the benzene rings C11–C16 and C18–C23, respectively. The short C9–C10 bond distance is a consequence of slight liberation of the ethoxy group. The ethoxy group is in all–trans conformation as observed from the torsional angles C3–C8–O2–C9 and C8–O2–C9–C10 of -176.0 (2) and 117.2 (3)° respectively.

The crystal structure of I is also have an intermolecular C—H···O interaction (Fig. 2 and Table) similar to earlier reported ortho- and para-substituted compounds (Jotani & Baldaniya, 2006, 2007). In the structure a carbon C23 atom of C18–C23 benzene ring participates in the C—H···O interaction that forms R22(14) graph–set motif (Bernstein et al., 1995), where as in ortho- and para-substituted chlorine derivatives, the interaction is due to C14 atom of C11–C16 benzene ring. This may be the different symmetry of the crystal system as the title compound I crystallizes in triclinic system where as the previous two structures were crystallized in monoclinic space group. A PLATON analysis (Spek, 2003) of I indicated that a weak intramolecular C—H···S hydrogen bond (Fig. 1 and Table) forms a pseudo-six-membered ring of S(6) graph-set motif (Bernstein et al., 1995) also help to consolidate the crystal packing. There is a comparatively weak π–π stacking interaction between the C18–C23 benzene rings with symmetry codes: (x, y, z) and (1-x, 1-y, -z); their centroids are separated by 3.762 (2)Å and the rings have a slippage of 1.523Å (Fig. 3).

Experimental

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g) in glacial acetic acid (25 ml), acetic anhydride (10 ml) and 3-chlorobenzaldehyde (0.01 mol) was refluxed for 3 h. The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (82% yield, mp 444 K). The compound was recrystallized by slow evaporation of an ethanol solution, yielding yellow, Platlike single crystals suitable for X–ray diffraction.

Refinement

H atoms were placed in idealized positions (C—H = 0.93–0.98Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The C—H···S intramolecular hydrogen ...
Fig. 2.
PLATON (Spek, 2003) plot of I showing C—H···O intermolecular interactions and forming R22(14) graph–set motif as dashed lines. H atoms not involved in hydrogen bonding have been omitted. Symmetry code (i): -x+1, ...
Fig. 3.
A view of the π–π stacking interaction (dashed line) in the crystal structure of I. H atoms have been omitted for clarity.

Crystal data

C23H19ClN2O3SZ = 2
Mr = 438.92F000 = 456
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.2650 (3) ÅCell parameters from 3579 reflections
b = 10.3291 (4) Åθ = 2.4–25.0º
c = 13.5655 (5) ŵ = 0.31 mm1
α = 94.129 (2)ºT = 293 (2) K
β = 100.837 (2)ºPlate, yellow
γ = 111.812 (2)º0.47 × 0.35 × 0.2 mm
V = 1043.15 (7) Å3

Data collection

Bruker KappaAPEXII CCD diffractometer3677 independent reflections
Radiation source: Fine–focus sealed tube3111 reflections with I > 2σ(I)
Monochromator: GraphiteRint = 0.024
T = 293(2) Kθmax = 25.0º
ω and [var phi] scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −9→9
Tmin = 0.867, Tmax = 0.936k = −12→12
18826 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: Difmap
Least-squares matrix: FullHydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.124  w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3244P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.007
3677 reflectionsΔρmax = 0.22 e Å3
273 parametersΔρmin = −0.25 e Å3
Primary atom site location: DirectExtinction correction: None

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.30130 (8)0.19021 (5)0.22916 (4)0.06087 (19)
Cl11.00143 (9)0.23402 (9)−0.04622 (5)0.0932 (3)
N10.0766 (2)0.24166 (16)0.32599 (13)0.0579 (4)
N20.2084 (2)0.40286 (15)0.22081 (11)0.0471 (4)
O10.3663 (2)0.52920 (15)0.11435 (11)0.0657 (4)
O2−0.0956 (2)0.62159 (17)0.26634 (16)0.0856 (6)
O3−0.2281 (3)0.4916 (2)0.37203 (18)0.1084 (7)
C10.1793 (3)0.28444 (18)0.26598 (14)0.0497 (4)
C20.1416 (2)0.50926 (18)0.25273 (14)0.0450 (4)
H20.09290.54150.19230.054*
C3−0.0077 (2)0.44015 (19)0.30586 (14)0.0503 (4)
C4−0.0276 (3)0.3192 (2)0.34291 (15)0.0545 (5)
C50.3266 (3)0.4282 (2)0.15758 (14)0.0502 (4)
C60.3964 (3)0.3146 (2)0.15427 (14)0.0525 (5)
C7−0.1590 (3)0.2496 (3)0.4043 (2)0.0770 (7)
H7A−0.12390.30510.47040.115*
H7B−0.16140.15710.41110.115*
H7C−0.27600.24200.37070.115*
C8−0.1222 (3)0.5170 (2)0.32026 (17)0.0598 (5)
C9−0.1899 (4)0.7149 (3)0.2770 (3)0.1048 (11)
H9A−0.26180.71340.21120.126*
H9B−0.26950.68170.32220.126*
C10−0.0642 (5)0.8562 (3)0.3169 (3)0.1099 (10)
H10A−0.12760.91650.32320.165*
H10B0.01390.88900.27180.165*
H10C0.00540.85770.38250.165*
C110.2941 (2)0.63460 (17)0.32116 (13)0.0427 (4)
C120.3852 (3)0.6173 (2)0.41182 (15)0.0600 (5)
H120.35260.52840.43130.072*
C130.5242 (3)0.7309 (3)0.47383 (17)0.0704 (6)
H130.58790.71790.53390.085*
C140.5688 (3)0.8626 (2)0.44719 (19)0.0709 (6)
H140.66130.93970.48950.085*
C150.4773 (4)0.8804 (2)0.3587 (2)0.0813 (7)
H150.50680.97020.34080.098*
C160.3416 (3)0.7672 (2)0.29520 (17)0.0640 (5)
H160.28150.78060.23420.077*
C170.5194 (3)0.3207 (2)0.10123 (15)0.0572 (5)
H170.54940.39610.06510.069*
C180.6139 (3)0.2279 (2)0.09120 (14)0.0573 (5)
C190.5795 (3)0.1033 (3)0.13257 (17)0.0684 (6)
H190.49020.07440.16860.082*
C200.6773 (4)0.0225 (3)0.12037 (19)0.0801 (7)
H200.6543−0.05970.14910.096*
C210.8079 (4)0.0619 (3)0.06648 (18)0.0763 (7)
H210.87340.00720.05840.092*
C220.8402 (3)0.1837 (3)0.02458 (16)0.0677 (6)
C230.7458 (3)0.2672 (2)0.03618 (15)0.0608 (5)
H230.77040.34940.00730.073*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0788 (4)0.0511 (3)0.0654 (3)0.0353 (3)0.0227 (3)0.0169 (2)
Cl10.0854 (5)0.1389 (7)0.0814 (4)0.0718 (5)0.0248 (3)0.0110 (4)
N10.0634 (10)0.0453 (9)0.0625 (10)0.0157 (8)0.0188 (8)0.0127 (8)
N20.0545 (9)0.0406 (8)0.0479 (8)0.0202 (7)0.0130 (7)0.0064 (6)
O10.0892 (10)0.0631 (9)0.0723 (9)0.0459 (8)0.0416 (8)0.0308 (7)
O20.0723 (10)0.0714 (10)0.1448 (17)0.0428 (8)0.0596 (11)0.0413 (11)
O30.1136 (15)0.1288 (17)0.1383 (18)0.0757 (14)0.0846 (14)0.0613 (14)
C10.0559 (11)0.0402 (9)0.0495 (10)0.0167 (8)0.0089 (8)0.0058 (8)
C20.0469 (9)0.0414 (9)0.0494 (10)0.0191 (8)0.0133 (8)0.0083 (7)
C30.0432 (9)0.0455 (10)0.0538 (11)0.0090 (8)0.0112 (8)0.0032 (8)
C40.0492 (10)0.0471 (10)0.0570 (11)0.0080 (8)0.0134 (8)0.0041 (8)
C50.0608 (11)0.0499 (10)0.0464 (10)0.0273 (9)0.0151 (8)0.0099 (8)
C60.0641 (11)0.0518 (10)0.0480 (10)0.0311 (9)0.0104 (9)0.0082 (8)
C70.0740 (15)0.0635 (14)0.0905 (17)0.0127 (11)0.0392 (13)0.0200 (12)
C80.0462 (10)0.0597 (12)0.0715 (13)0.0167 (9)0.0195 (9)0.0058 (10)
C90.0828 (18)0.088 (2)0.180 (3)0.0567 (16)0.061 (2)0.038 (2)
C100.112 (2)0.086 (2)0.150 (3)0.0586 (19)0.037 (2)0.0105 (19)
C110.0403 (8)0.0421 (9)0.0494 (10)0.0171 (7)0.0170 (7)0.0064 (7)
C120.0666 (12)0.0487 (11)0.0581 (12)0.0187 (9)0.0066 (10)0.0087 (9)
C130.0690 (14)0.0758 (15)0.0564 (12)0.0245 (12)0.0022 (10)0.0014 (11)
C140.0588 (12)0.0558 (13)0.0766 (15)0.0026 (10)0.0148 (11)−0.0080 (11)
C150.0806 (16)0.0443 (12)0.0954 (18)0.0020 (11)0.0115 (14)0.0139 (12)
C160.0650 (13)0.0484 (11)0.0705 (13)0.0143 (10)0.0104 (10)0.0174 (10)
C170.0714 (13)0.0622 (12)0.0508 (11)0.0388 (10)0.0160 (9)0.0127 (9)
C180.0697 (12)0.0682 (13)0.0441 (10)0.0422 (11)0.0064 (9)0.0055 (9)
C190.0897 (16)0.0763 (14)0.0588 (12)0.0526 (13)0.0189 (11)0.0164 (11)
C200.109 (2)0.0881 (17)0.0676 (14)0.0677 (16)0.0141 (14)0.0181 (12)
C210.0910 (17)0.0959 (18)0.0632 (13)0.0684 (15)0.0039 (12)0.0043 (13)
C220.0688 (13)0.0962 (17)0.0486 (11)0.0526 (13)0.0013 (9)−0.0021 (11)
C230.0686 (13)0.0753 (14)0.0477 (11)0.0430 (11)0.0056 (9)0.0059 (9)

Geometric parameters (Å, °)

S1—C61.743 (2)C10—H10A0.9600
S1—C11.750 (2)C10—H10B0.9600
Cl1—C221.734 (3)C10—H10C0.9600
N1—C11.269 (2)C11—C161.370 (3)
N1—C41.413 (3)C11—C121.376 (3)
N2—C11.369 (2)C12—C131.378 (3)
N2—C51.384 (2)C12—H120.9300
N2—C21.474 (2)C13—C141.366 (3)
O1—C51.202 (2)C13—H130.9300
O2—C81.322 (3)C14—C151.357 (4)
O2—C91.461 (3)C14—H140.9300
O3—C81.190 (3)C15—C161.372 (3)
C2—C31.518 (3)C15—H150.9300
C2—C111.517 (2)C16—H160.9300
C2—H20.9800C17—C181.458 (3)
C3—C41.345 (3)C17—H170.9300
C3—C81.473 (3)C18—C231.390 (3)
C4—C71.495 (3)C18—C191.395 (3)
C5—C61.489 (3)C19—C201.382 (3)
C6—C171.338 (3)C19—H190.9300
C7—H7A0.9600C20—C211.370 (4)
C7—H7B0.9600C20—H200.9300
C7—H7C0.9600C21—C221.374 (4)
C9—C101.432 (4)C21—H210.9300
C9—H9A0.9700C22—C231.380 (3)
C9—H9B0.9700C23—H230.9300
C6—S1—C191.75 (9)H10A—C10—H10B109.5
C1—N1—C4116.63 (16)C9—C10—H10C109.5
C1—N2—C5116.72 (15)H10A—C10—H10C109.5
C1—N2—C2120.56 (15)H10B—C10—H10C109.5
C5—N2—C2121.87 (14)C16—C11—C12118.73 (17)
C8—O2—C9118.6 (2)C16—C11—C2120.90 (17)
N1—C1—N2126.94 (18)C12—C11—C2120.36 (16)
N1—C1—S1121.68 (15)C11—C12—C13120.4 (2)
N2—C1—S1111.37 (14)C11—C12—H12119.8
N2—C2—C3108.40 (14)C13—C12—H12119.8
N2—C2—C11109.88 (14)C14—C13—C12120.0 (2)
C3—C2—C11111.85 (14)C14—C13—H13120.0
N2—C2—H2108.9C12—C13—H13120.0
C3—C2—H2108.9C15—C14—C13119.6 (2)
C11—C2—H2108.9C15—C14—H14120.2
C4—C3—C8121.80 (18)C13—C14—H14120.2
C4—C3—C2121.61 (17)C14—C15—C16120.7 (2)
C8—C3—C2116.49 (17)C14—C15—H15119.7
C3—C4—N1122.24 (17)C16—C15—H15119.7
C3—C4—C7125.8 (2)C11—C16—C15120.4 (2)
N1—C4—C7111.97 (18)C11—C16—H16119.8
O1—C5—N2123.64 (17)C15—C16—H16119.8
O1—C5—C6126.67 (18)C6—C17—C18130.16 (19)
N2—C5—C6109.69 (16)C6—C17—H17114.9
C17—C6—C5120.14 (18)C18—C17—H17114.9
C17—C6—S1129.37 (15)C23—C18—C19118.59 (19)
C5—C6—S1110.45 (14)C23—C18—C17117.16 (19)
C4—C7—H7A109.5C19—C18—C17124.2 (2)
C4—C7—H7B109.5C20—C19—C18120.3 (2)
H7A—C7—H7B109.5C20—C19—H19119.8
C4—C7—H7C109.5C18—C19—H19119.8
H7A—C7—H7C109.5C21—C20—C19120.9 (2)
H7B—C7—H7C109.5C21—C20—H20119.6
O3—C8—O2122.0 (2)C19—C20—H20119.6
O3—C8—C3126.6 (2)C20—C21—C22118.8 (2)
O2—C8—C3111.39 (17)C20—C21—H21120.6
C10—C9—O2110.2 (2)C22—C21—H21120.6
C10—C9—H9A109.6C21—C22—C23121.7 (2)
O2—C9—H9A109.6C21—C22—Cl1119.69 (17)
C10—C9—H9B109.6C23—C22—Cl1118.6 (2)
O2—C9—H9B109.6C22—C23—C18119.7 (2)
H9A—C9—H9B108.1C22—C23—H23120.2
C9—C10—H10A109.5C18—C23—H23120.2
C9—C10—H10B109.5
C4—N1—C1—N24.5 (3)C9—O2—C8—C3−176.0 (2)
C4—N1—C1—S1−174.31 (14)C4—C3—C8—O37.8 (4)
C5—N2—C1—N1−179.82 (18)C2—C3—C8—O3−168.5 (2)
C2—N2—C1—N110.6 (3)C4—C3—C8—O2−171.50 (19)
C5—N2—C1—S1−0.9 (2)C2—C3—C8—O212.2 (3)
C2—N2—C1—S1−170.54 (12)C8—O2—C9—C10117.2 (3)
C6—S1—C1—N1−179.77 (17)N2—C2—C11—C16120.27 (19)
C6—S1—C1—N21.29 (14)C3—C2—C11—C16−119.3 (2)
C1—N2—C2—C3−20.5 (2)N2—C2—C11—C12−61.0 (2)
C5—N2—C2—C3170.42 (15)C3—C2—C11—C1259.4 (2)
C1—N2—C2—C11101.98 (18)C16—C11—C12—C13−1.6 (3)
C5—N2—C2—C11−67.1 (2)C2—C11—C12—C13179.69 (19)
N2—C2—C3—C418.8 (2)C11—C12—C13—C142.2 (3)
C11—C2—C3—C4−102.5 (2)C12—C13—C14—C15−1.1 (4)
N2—C2—C3—C8−164.91 (16)C13—C14—C15—C16−0.6 (4)
C11—C2—C3—C873.8 (2)C12—C11—C16—C15−0.1 (3)
C8—C3—C4—N1177.36 (17)C2—C11—C16—C15178.6 (2)
C2—C3—C4—N1−6.5 (3)C14—C15—C16—C111.2 (4)
C8—C3—C4—C7−1.9 (3)C5—C6—C17—C18176.23 (19)
C2—C3—C4—C7174.21 (19)S1—C6—C17—C18−1.3 (4)
C1—N1—C4—C3−6.4 (3)C6—C17—C18—C23−175.3 (2)
C1—N1—C4—C7173.01 (18)C6—C17—C18—C195.1 (4)
C1—N2—C5—O1−178.87 (18)C23—C18—C19—C201.2 (3)
C2—N2—C5—O1−9.4 (3)C17—C18—C19—C20−179.2 (2)
C1—N2—C5—C60.0 (2)C18—C19—C20—C21−0.9 (4)
C2—N2—C5—C6169.41 (15)C19—C20—C21—C220.0 (4)
O1—C5—C6—C171.8 (3)C20—C21—C22—C230.5 (3)
N2—C5—C6—C17−176.99 (17)C20—C21—C22—Cl1−178.66 (18)
O1—C5—C6—S1179.79 (17)C21—C22—C23—C18−0.2 (3)
N2—C5—C6—S11.0 (2)Cl1—C22—C23—C18178.96 (15)
C1—S1—C6—C17176.5 (2)C19—C18—C23—C22−0.6 (3)
C1—S1—C6—C5−1.29 (14)C17—C18—C23—C22179.71 (18)
C9—O2—C8—O34.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.493.287 (3)143
C19—H19···S10.932.503.210 (3)133

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2081).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.
  • Jotani, M. M. & Baldaniya, B. B. (2006). Acta Cryst. E62, o5871–o5873.
  • Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.
  • Kappe, C. O. (2000). Eur. J. Med. Chem.35, 1043–1052. [PubMed]
  • Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). J. Natl Cancer Inst.83, 757–766. [PubMed]
  • Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Dimarco, J. D., Hedberg, J., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem.38, 119–129. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690. [PubMed]
  • Winter, C. A., Risley, E. A. & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med.111, 544–547. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography