PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m601–m602.
Published online 2008 March 29. doi:  10.1107/S1600536808007915
PMCID: PMC2961003

[(E)-2-(3,5-Dibromo-2-oxidobenzyl­ideneamino)-3-(4-hydroxy­phen­yl)propionato-κ3 O,N,O′](dimethyl­formamide-κO)copper(II)

Abstract

In the title complex, [Cu(C16H11Br2NO4)(C3H7NO)]2, there are two unique mol­ecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L 2− [LH2 = (E)-2-(3,5-dibromo-2-hydroxy­benzyl­idene­amino)-2-(4-hydroxy­phenyl)acetic acid] and the O atom of a dimethyl­formamide mol­ecule to give a slightly distorted square-planar geometry. The two unique mol­ecules form a dimer through weak C—H(...)O hydrogen bonds. In the dimer, the Cu(...)Cu distance is 3.712 (1) Å. In the crystal structure, mol­ecules form a one-dimensional chain through C—H(...)O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For related structures, see: Li et al. 2008 [triangle]; Zhang et al. (2007a [triangle],b [triangle]). For preparative procedures, see: Xia et al. (2007 [triangle]); Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m601-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H11Br2NO4)(C3H7NO)]
  • M r = 577.71
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m601-efi1.jpg
  • a = 11.4316 (19) Å
  • b = 11.840 (2) Å
  • c = 15.984 (2) Å
  • α = 88.998 (3)°
  • β = 83.562 (2)°
  • γ = 73.210 (2)°
  • V = 2057.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.98 mm−1
  • T = 298 (2) K
  • 0.33 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick,1996 [triangle]) T min = 0.267, T max = 0.498
  • 10763 measured reflections
  • 7143 independent reflections
  • 3697 reflections with > 2s(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.093
  • S = 1.00
  • 7143 reflections
  • 523 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007915/sj2468sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007915/sj2468Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the NSFC (No. 20561001) and the EDF of Guangxi (No. 200607LX067).

supplementary crystallographic information

Comment

Herein, we report the structure of a new mononuclear copper coordination complex [Cu(L)(C3H7NO)]2 (1), Fig. 1, of the chiral ligand (E)-2-(3,5-dibromo-2-oxidobenzylideneamino)-2-(4-hydroxyphenyl)acetate LH2. The Cu(II) atom coordinates a dimethylformamide molecule and the tridentate anionic ligand L2- which binds through the N atom and carboxylate and phenolate O atoms. Although the LH2 ligand is chiral, the compound crystallizes as a racemate with two molecules in the asymmetric unit. The coordination geometry about each copper atom is slightly distorted square planar, Table 1. A s expected all other bond distances and angles are within normal ranges (Zhang et al., 2007a,b).

The two unique molecules form a dimer through weak C18—H18C···O7 and C37—H37C···O2 hydrogen bonds, Table 2. In the dimer, the Cu1···Cu2 distance is 3.712 (1) Å. In the crystal structure, molecules of (I) form a one-dimensional chain along c (Fig. 2) through C3–H3B···O8 and C22–H22B···O3 hydrogen bonds. These chains then form a three-dimensional network through O3—H3···O1 and O8—H8···O6 hydrogen bonds and C29–H29···O2 and C35—H35···O2 interactions (Table 2, Figure 3).

Experimental

Complex (I) was prepared following the procedure described by Liu et al. (2007) and Xia et al. (2007) as follows. 3,5-Dibromo-2-hydroxy-benzaldehyde(0.560 g, 2.0 mmol) and 4-hydroxyl-phenylalanine (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to give a yellow solution. 2 ml DMF and 10 ml of a methanolic solution of CuSO4.5H2O (0.5 g, 2 mmol) were added, the mixture was refluxed for another 1 h at 363 K, and the resulting blue solution was filtered. Blue single crystals suitable for X–ray analysis were obtained by slow evaporation of the filtrate at room temperature. Yield: 80.1% (based on copper). Elemental analysis for [Cu(C16H11Br2NO4)(C3H7NO)]2 calculated: C 46.69, H 3.71, N 5.73%; found: C 46.65, H 3.81, N 5.71%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq (O) for the OH groups.

Figures

Fig. 1.
The asymmetric unit of (I), with 30% probability displacement ellipsoids for non-H atoms. Hydrogen atoms have been omitted and C—H···O hydrogen bonds are drawn as dashed lines.
Fig. 2.
The formation of one-dimensional chains along c. Hydrogen bonds are drawn as dashed lines.
Fig. 3.
Crystal packing of (I) showing the three-dimensional network, with hydrogen bonds drawn as dashed lines.

Crystal data

[Cu(C16H11Br2NO4)(C3H7NO)]Z = 4
Mr = 577.71F000 = 1140
Triclinic, P1Dx = 1.865 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 11.4316 (19) ÅCell parameters from 1919 reflections
b = 11.840 (2) Åθ = 2.2–21.6º
c = 15.984 (2) ŵ = 4.98 mm1
α = 88.998 (3)ºT = 298 (2) K
β = 83.562 (2)ºPrism, blue
γ = 73.210 (2)º0.33 × 0.18 × 0.14 mm
V = 2057.9 (6) Å3

Data collection

Bruker SMART CCD area-detector diffractometer7143 independent reflections
Radiation source: fine-focus sealed tube3697 reflections with > 2s(I)
Monochromator: graphiteRint = 0.041
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.3º
Absorption correction: multi-scan(SADABS; Sheldrick,1996)h = −13→13
Tmin = 0.267, Tmax = 0.498k = −14→10
10763 measured reflectionsl = −19→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.024P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7143 reflectionsΔρmax = 0.60 e Å3
523 parametersΔρmin = −0.55 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.45708 (7)0.70847 (7)0.17285 (5)0.0437 (2)
Cu20.33188 (7)0.52131 (7)0.32557 (5)0.0433 (2)
Br10.47185 (6)0.32932 (7)0.06179 (5)0.0569 (2)
Br20.95715 (7)0.15518 (7)0.14381 (6)0.0859 (3)
Br30.70303 (6)0.51591 (6)0.44153 (5)0.0583 (2)
Br40.88589 (7)0.02902 (7)0.36347 (6)0.0810 (3)
N10.6098 (5)0.6878 (5)0.2154 (3)0.0386 (14)
N20.1415 (5)0.6973 (6)0.0891 (4)0.0586 (17)
N30.3513 (4)0.3622 (4)0.2930 (3)0.0312 (13)
N40.3335 (5)0.8409 (5)0.4121 (3)0.0494 (15)
O10.4266 (4)0.8725 (4)0.2033 (3)0.0507 (12)
O20.4951 (4)0.9914 (4)0.2783 (3)0.0625 (14)
O30.7098 (4)0.9130 (4)−0.1456 (3)0.0760 (16)
H30.67520.9822−0.15490.114*
O40.4861 (4)0.5476 (4)0.1493 (3)0.0492 (12)
O50.2972 (4)0.7485 (4)0.1347 (3)0.0592 (14)
O60.1695 (4)0.5527 (4)0.2919 (3)0.0509 (13)
O70.0475 (4)0.4692 (4)0.2348 (3)0.0709 (16)
O80.0751 (4)0.2943 (4)0.6592 (3)0.0816 (17)
H80.00630.34000.67110.122*
O90.4890 (4)0.4905 (4)0.3606 (3)0.0431 (12)
O100.2976 (4)0.6874 (4)0.3510 (3)0.0645 (15)
C10.5074 (7)0.8940 (6)0.2447 (4)0.0443 (18)
C20.6249 (6)0.7964 (6)0.2492 (4)0.0452 (18)
H20.63910.78420.30840.054*
C30.7327 (6)0.8309 (6)0.2023 (4)0.0483 (18)
H3A0.73990.90130.22890.058*
H3B0.80770.76820.20790.058*
C40.7220 (5)0.8543 (6)0.1097 (4)0.0390 (17)
C50.6648 (6)0.9636 (6)0.0814 (4)0.0467 (18)
H50.62901.02450.12040.056*
C60.6584 (6)0.9870 (6)−0.0033 (4)0.0492 (19)
H60.62021.0627−0.02080.059*
C70.7089 (6)0.8970 (6)−0.0613 (5)0.0450 (18)
C80.7654 (5)0.7877 (6)−0.0346 (4)0.0458 (18)
H8A0.80030.7271−0.07400.055*
C90.7724 (5)0.7642 (6)0.0503 (4)0.0394 (17)
H90.81070.68830.06740.047*
C100.6954 (6)0.5907 (7)0.2170 (4)0.0427 (19)
H100.76360.59210.24320.051*
C110.6958 (6)0.4798 (6)0.1821 (4)0.0339 (16)
C120.5917 (6)0.4666 (6)0.1476 (4)0.0384 (17)
C130.6066 (6)0.3563 (7)0.1109 (4)0.0434 (18)
C140.7127 (6)0.2650 (6)0.1096 (4)0.0464 (18)
H140.71840.19300.08450.056*
C150.8119 (6)0.2807 (6)0.1461 (4)0.0473 (19)
C160.8028 (6)0.3859 (6)0.1807 (4)0.0451 (19)
H160.86970.39640.20430.054*
C170.2547 (7)0.6760 (7)0.1048 (5)0.058 (2)
H170.30720.60070.09260.070*
C180.0959 (7)0.6084 (7)0.0547 (5)0.083 (3)
H18A0.16340.53970.03880.125*
H18B0.05540.63870.00610.125*
H18C0.03870.58770.09640.125*
C190.0575 (7)0.8125 (8)0.1092 (6)0.117 (4)
H19A0.02130.81420.16660.175*
H19B−0.00610.82910.07240.175*
H19C0.10110.87070.10210.175*
C200.1454 (6)0.4640 (7)0.2619 (4)0.0453 (19)
C210.2437 (5)0.3457 (5)0.2600 (4)0.0390 (17)
H210.26750.32020.20100.047*
C220.1966 (5)0.2501 (5)0.3067 (4)0.0427 (17)
H22A0.12380.24520.28290.051*
H22B0.25880.17480.29640.051*
C230.1652 (6)0.2694 (5)0.4012 (4)0.0349 (16)
C240.2473 (6)0.2088 (5)0.4556 (5)0.0445 (18)
H240.32460.16130.43420.053*
C250.2147 (6)0.2189 (6)0.5402 (5)0.0504 (19)
H250.27070.17750.57590.060*
C260.1029 (7)0.2877 (6)0.5744 (5)0.0484 (19)
C270.0216 (6)0.3516 (6)0.5208 (4)0.0488 (19)
H27−0.05380.40220.54250.059*
C280.0536 (6)0.3397 (6)0.4346 (4)0.0422 (18)
H28−0.00230.38050.39870.051*
C290.4494 (6)0.2781 (6)0.2933 (4)0.0387 (17)
H290.45080.20630.26980.046*
C300.5595 (6)0.2846 (6)0.3275 (4)0.0354 (16)
C310.5709 (6)0.3894 (6)0.3605 (4)0.0353 (16)
C320.6824 (6)0.3771 (6)0.3959 (4)0.0431 (18)
C330.7748 (6)0.2735 (7)0.3965 (4)0.050 (2)
H330.84610.27060.42050.060*
C340.7605 (6)0.1727 (6)0.3609 (4)0.0479 (19)
C350.6547 (6)0.1792 (6)0.3273 (4)0.0418 (18)
H350.64530.11160.30360.050*
C360.3602 (6)0.7288 (6)0.3940 (4)0.0496 (19)
H360.42900.67750.41410.059*
C370.4104 (6)0.8861 (6)0.4608 (4)0.063 (2)
H37A0.47210.82130.48120.095*
H37B0.36070.93220.50770.095*
H37C0.44940.93460.42590.095*
C380.2263 (6)0.9238 (6)0.3835 (5)0.075 (2)
H38A0.17380.88160.36440.112*
H38B0.25140.96870.33800.112*
H38C0.18230.97610.42910.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0467 (5)0.0381 (5)0.0484 (6)−0.0140 (4)−0.0101 (4)0.0016 (4)
Cu20.0440 (5)0.0341 (5)0.0536 (6)−0.0120 (4)−0.0116 (4)0.0022 (4)
Br10.0556 (5)0.0620 (6)0.0605 (6)−0.0290 (4)−0.0039 (4)−0.0116 (4)
Br20.0567 (5)0.0566 (6)0.1299 (9)0.0036 (5)−0.0036 (5)0.0072 (5)
Br30.0577 (5)0.0530 (5)0.0742 (6)−0.0261 (4)−0.0222 (4)0.0004 (4)
Br40.0546 (5)0.0557 (6)0.1204 (8)0.0037 (5)−0.0123 (5)0.0119 (5)
N10.048 (4)0.032 (4)0.039 (4)−0.015 (3)−0.009 (3)0.008 (3)
N20.037 (4)0.065 (5)0.074 (5)−0.012 (4)−0.016 (3)0.002 (4)
N30.032 (3)0.026 (3)0.039 (4)−0.012 (3)−0.006 (3)0.002 (2)
N40.056 (4)0.044 (4)0.048 (4)−0.016 (4)0.002 (3)−0.003 (3)
O10.055 (3)0.042 (3)0.058 (3)−0.017 (3)−0.009 (3)0.003 (2)
O20.084 (4)0.044 (3)0.065 (4)−0.027 (3)−0.008 (3)−0.013 (3)
O30.108 (4)0.059 (4)0.041 (4)0.007 (3)−0.005 (3)−0.003 (3)
O40.046 (3)0.035 (3)0.066 (3)−0.007 (3)−0.017 (2)0.004 (2)
O50.050 (3)0.055 (4)0.073 (4)−0.013 (3)−0.014 (3)−0.005 (3)
O60.046 (3)0.042 (3)0.066 (4)−0.011 (3)−0.015 (2)0.004 (2)
O70.049 (3)0.086 (4)0.087 (4)−0.027 (3)−0.026 (3)0.019 (3)
O80.098 (4)0.078 (4)0.041 (4)0.017 (3)−0.007 (3)0.001 (3)
O90.048 (3)0.031 (3)0.051 (3)−0.010 (2)−0.008 (2)0.001 (2)
O100.064 (3)0.035 (3)0.095 (4)−0.005 (3)−0.033 (3)−0.002 (3)
C10.061 (5)0.038 (5)0.037 (5)−0.021 (5)−0.003 (4)0.010 (4)
C20.064 (5)0.049 (5)0.035 (5)−0.034 (4)−0.014 (4)0.004 (3)
C30.059 (5)0.051 (5)0.045 (5)−0.028 (4)−0.018 (4)0.000 (3)
C40.039 (4)0.041 (5)0.046 (5)−0.024 (4)−0.007 (4)−0.003 (4)
C50.072 (5)0.032 (5)0.037 (5)−0.018 (4)0.005 (4)−0.006 (3)
C60.070 (5)0.025 (4)0.048 (5)−0.008 (4)−0.003 (4)0.001 (4)
C70.046 (4)0.044 (5)0.041 (5)−0.007 (4)−0.002 (4)−0.006 (4)
C80.045 (4)0.044 (5)0.044 (5)−0.005 (4)−0.006 (4)−0.013 (4)
C90.038 (4)0.033 (4)0.053 (5)−0.015 (4)−0.014 (4)0.002 (4)
C100.051 (5)0.065 (6)0.027 (4)−0.036 (5)−0.014 (4)0.015 (4)
C110.037 (4)0.032 (4)0.038 (4)−0.015 (4)−0.013 (3)0.009 (3)
C120.054 (5)0.024 (4)0.042 (5)−0.018 (4)−0.005 (4)0.007 (3)
C130.037 (4)0.058 (5)0.043 (5)−0.025 (4)−0.006 (3)0.008 (4)
C140.054 (5)0.030 (5)0.055 (5)−0.016 (4)0.006 (4)−0.003 (3)
C150.045 (5)0.036 (5)0.061 (5)−0.015 (4)−0.003 (4)0.012 (4)
C160.049 (5)0.038 (5)0.054 (5)−0.022 (4)−0.006 (4)0.013 (4)
C170.044 (5)0.067 (6)0.058 (6)−0.005 (5)−0.011 (4)0.014 (4)
C180.076 (6)0.092 (7)0.097 (8)−0.038 (6)−0.037 (5)0.019 (5)
C190.059 (6)0.116 (9)0.169 (11)−0.004 (6)−0.033 (6)−0.046 (7)
C200.035 (4)0.055 (6)0.046 (5)−0.016 (5)0.000 (4)0.021 (4)
C210.042 (4)0.049 (5)0.034 (4)−0.023 (4)−0.011 (3)−0.002 (3)
C220.045 (4)0.040 (4)0.051 (5)−0.023 (4)−0.011 (3)−0.004 (3)
C230.039 (4)0.029 (4)0.044 (5)−0.021 (4)−0.005 (4)−0.001 (3)
C240.037 (4)0.034 (4)0.058 (6)−0.003 (4)−0.007 (4)−0.002 (4)
C250.050 (5)0.043 (5)0.054 (6)−0.002 (4)−0.017 (4)0.005 (4)
C260.061 (5)0.042 (5)0.042 (5)−0.014 (4)−0.010 (4)0.001 (4)
C270.041 (4)0.050 (5)0.048 (5)−0.001 (4)−0.009 (4)0.008 (4)
C280.035 (4)0.054 (5)0.041 (5)−0.014 (4)−0.017 (4)0.011 (4)
C290.049 (5)0.033 (5)0.035 (4)−0.015 (4)0.002 (4)−0.007 (3)
C300.033 (4)0.035 (4)0.040 (4)−0.013 (4)−0.005 (3)0.005 (3)
C310.039 (4)0.036 (5)0.038 (4)−0.023 (4)−0.001 (3)0.002 (3)
C320.043 (4)0.057 (5)0.041 (5)−0.033 (4)−0.005 (4)0.002 (4)
C330.039 (4)0.051 (5)0.062 (5)−0.014 (4)−0.013 (4)0.014 (4)
C340.045 (5)0.050 (5)0.051 (5)−0.021 (4)0.001 (4)0.008 (4)
C350.050 (5)0.037 (5)0.040 (5)−0.017 (4)0.004 (4)−0.001 (3)
C360.057 (5)0.030 (5)0.057 (5)−0.003 (4)−0.011 (4)0.006 (4)
C370.079 (6)0.062 (5)0.052 (5)−0.027 (5)−0.001 (4)−0.013 (4)
C380.061 (5)0.051 (6)0.103 (7)0.004 (5)−0.024 (5)−0.013 (5)

Geometric parameters (Å, °)

Cu1—O41.874 (4)C10—C111.435 (8)
Cu1—N11.893 (5)C10—H100.9300
Cu1—O51.917 (5)C11—C161.393 (8)
Cu1—O11.932 (4)C11—C121.415 (8)
Cu2—O91.874 (4)C12—C131.398 (9)
Cu2—N31.907 (5)C13—C141.371 (8)
Cu2—O61.922 (4)C14—C151.391 (8)
Cu2—O101.932 (5)C14—H140.9300
Br1—C131.912 (6)C15—C161.344 (9)
Br2—C151.878 (7)C16—H160.9300
Br3—C321.896 (6)C17—H170.9300
Br4—C341.884 (7)C18—H18A0.9600
N1—C101.279 (7)C18—H18B0.9600
N1—C21.465 (7)C18—H18C0.9600
N2—C171.297 (8)C19—H19A0.9600
N2—C191.440 (9)C19—H19B0.9600
N2—C181.443 (8)C19—H19C0.9600
N3—C291.267 (6)C20—C211.520 (8)
N3—C211.454 (6)C21—C221.536 (7)
N4—C361.303 (8)C21—H210.9800
N4—C381.446 (7)C22—C231.518 (8)
N4—C371.451 (7)C22—H22A0.9700
O1—C11.278 (7)C22—H22B0.9700
O2—C11.245 (7)C23—C281.362 (8)
O3—C71.358 (7)C23—C241.387 (7)
O3—H30.8200C24—C251.360 (8)
O4—C121.305 (7)C24—H240.9300
O5—C171.228 (8)C25—C261.361 (8)
O6—C201.274 (8)C25—H250.9300
O7—C201.229 (7)C26—C271.386 (8)
O8—C261.355 (7)C27—C281.384 (8)
O8—H80.8200C27—H270.9300
O9—C311.289 (6)C28—H280.9300
O10—C361.245 (7)C29—C301.449 (7)
C1—C21.506 (9)C29—H290.9300
C2—C31.524 (8)C30—C351.399 (8)
C2—H20.9800C30—C311.403 (8)
C3—C41.513 (8)C31—C321.421 (8)
C3—H3A0.9700C32—C331.368 (8)
C3—H3B0.9700C33—C341.391 (8)
C4—C51.366 (8)C33—H330.9300
C4—C91.389 (8)C34—C351.359 (8)
C5—C61.383 (8)C35—H350.9300
C5—H50.9300C36—H360.9300
C6—C71.373 (9)C37—H37A0.9600
C6—H60.9300C37—H37B0.9600
C7—C81.354 (8)C37—H37C0.9600
C8—C91.386 (8)C38—H38A0.9600
C8—H8A0.9300C38—H38B0.9600
C9—H90.9300C38—H38C0.9600
O4—Cu1—N194.3 (2)C11—C16—H16119.1
O4—Cu1—O592.5 (2)O5—C17—N2124.5 (8)
N1—Cu1—O5173.1 (2)O5—C17—H17117.8
O4—Cu1—O1177.0 (2)N2—C17—H17117.8
N1—Cu1—O184.6 (2)N2—C18—H18A109.5
O5—Cu1—O188.5 (2)N2—C18—H18B109.5
O9—Cu2—N395.0 (2)H18A—C18—H18B109.5
O9—Cu2—O6178.9 (2)N2—C18—H18C109.5
N3—Cu2—O685.1 (2)H18A—C18—H18C109.5
O9—Cu2—O1090.9 (2)H18B—C18—H18C109.5
N3—Cu2—O10173.7 (2)N2—C19—H19A109.5
O6—Cu2—O1089.0 (2)N2—C19—H19B109.5
C10—N1—C2120.1 (5)H19A—C19—H19B109.5
C10—N1—Cu1126.0 (4)N2—C19—H19C109.5
C2—N1—Cu1113.9 (4)H19A—C19—H19C109.5
C17—N2—C19118.9 (7)H19B—C19—H19C109.5
C17—N2—C18122.2 (7)O7—C20—O6123.6 (7)
C19—N2—C18118.9 (6)O7—C20—C21118.7 (7)
C29—N3—C21121.2 (5)O6—C20—C21117.7 (6)
C29—N3—Cu2125.2 (4)N3—C21—C20108.7 (5)
C21—N3—Cu2113.5 (4)N3—C21—C22112.6 (4)
C36—N4—C38120.5 (6)C20—C21—C22112.3 (5)
C36—N4—C37121.2 (6)N3—C21—H21107.7
C38—N4—C37118.3 (6)C20—C21—H21107.7
C1—O1—Cu1114.8 (4)C22—C21—H21107.7
C7—O3—H3109.5C23—C22—C21115.3 (5)
C12—O4—Cu1126.0 (4)C23—C22—H22A108.4
C17—O5—Cu1123.4 (5)C21—C22—H22A108.4
C20—O6—Cu2115.0 (4)C23—C22—H22B108.4
C26—O8—H8109.5C21—C22—H22B108.4
C31—O9—Cu2126.7 (4)H22A—C22—H22B107.5
C36—O10—Cu2124.0 (4)C28—C23—C24118.5 (6)
O2—C1—O1123.5 (7)C28—C23—C22121.2 (5)
O2—C1—C2119.3 (7)C24—C23—C22120.1 (6)
O1—C1—C2117.1 (6)C25—C24—C23119.9 (6)
N1—C2—C1108.5 (6)C25—C24—H24120.0
N1—C2—C3112.6 (6)C23—C24—H24120.0
C1—C2—C3110.1 (5)C24—C25—C26122.1 (6)
N1—C2—H2108.5C24—C25—H25118.9
C1—C2—H2108.5C26—C25—H25118.9
C3—C2—H2108.5O8—C26—C25119.7 (6)
C4—C3—C2114.2 (5)O8—C26—C27121.8 (7)
C4—C3—H3A108.7C25—C26—C27118.4 (7)
C2—C3—H3A108.7C28—C27—C26119.5 (7)
C4—C3—H3B108.7C28—C27—H27120.3
C2—C3—H3B108.7C26—C27—H27120.3
H3A—C3—H3B107.6C23—C28—C27121.4 (6)
C5—C4—C9117.7 (6)C23—C28—H28119.3
C5—C4—C3121.8 (6)C27—C28—H28119.3
C9—C4—C3120.4 (6)N3—C29—C30125.3 (6)
C4—C5—C6122.3 (6)N3—C29—H29117.4
C4—C5—H5118.8C30—C29—H29117.4
C6—C5—H5118.8C35—C30—C31121.0 (6)
C7—C6—C5119.2 (6)C35—C30—C29116.3 (6)
C7—C6—H6120.4C31—C30—C29122.7 (6)
C5—C6—H6120.4O9—C31—C30124.6 (6)
C8—C7—O3117.4 (6)O9—C31—C32120.7 (6)
C8—C7—C6119.5 (7)C30—C31—C32114.7 (6)
O3—C7—C6123.0 (6)C33—C32—C31124.1 (6)
C7—C8—C9121.4 (6)C33—C32—Br3119.3 (5)
C7—C8—H8A119.3C31—C32—Br3116.5 (5)
C9—C8—H8A119.3C32—C33—C34119.0 (6)
C8—C9—C4119.9 (6)C32—C33—H33120.5
C8—C9—H9120.1C34—C33—H33120.5
C4—C9—H9120.1C35—C34—C33119.2 (7)
N1—C10—C11126.0 (6)C35—C34—Br4121.5 (6)
N1—C10—H10117.0C33—C34—Br4119.3 (5)
C11—C10—H10117.0C34—C35—C30121.9 (6)
C16—C11—C12120.7 (6)C34—C35—H35119.0
C16—C11—C10118.3 (6)C30—C35—H35119.0
C12—C11—C10121.0 (6)O10—C36—N4122.9 (6)
O4—C12—C13119.7 (6)O10—C36—H36118.5
O4—C12—C11125.0 (6)N4—C36—H36118.5
C13—C12—C11115.3 (6)N4—C37—H37A109.5
C14—C13—C12123.3 (6)N4—C37—H37B109.5
C14—C13—Br1117.9 (5)H37A—C37—H37B109.5
C12—C13—Br1118.8 (5)N4—C37—H37C109.5
C13—C14—C15119.5 (6)H37A—C37—H37C109.5
C13—C14—H14120.2H37B—C37—H37C109.5
C15—C14—H14120.2N4—C38—H38A109.5
C16—C15—C14119.3 (6)N4—C38—H38B109.5
C16—C15—Br2121.4 (6)H38A—C38—H38B109.5
C14—C15—Br2119.2 (6)N4—C38—H38C109.5
C15—C16—C11121.8 (7)H38A—C38—H38C109.5
C15—C16—H16119.1H38B—C38—H38C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18C···O70.962.593.364 (9)137
C37—H37C···O20.962.483.307 (8)144
O3—H3···O1i0.821.982.772 (6)163
O8—H8···O6ii0.822.072.888 (6)176
C16—H16···O7iii0.932.523.422 (9)163
C29—H29···O2iv0.932.453.291 (8)150
C35—H35···O2iv0.932.593.408 (8)147

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2468).

References

  • Bruker (2001). SAINT and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52. [PMC free article] [PubMed]
  • Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography