PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m558.
Published online 2008 March 14. doi:  10.1107/S1600536808006417
PMCID: PMC2961000

Diaqua­bis(pyrazine-2-carboxyl­ato-κ2 N 1,O)manganese(II) dihydrate

Abstract

In the title compound, [Mn(C5H3N2O2)2(H2O)2]·2H2O, the MnII atom, lying on an inversion centre, has a distorted octa­hedral environment and the molecules are linked by O—H(...)O and N—H(...)O hydrogen bonds to form a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Ciurtin et al. (2002 [triangle]); Dong et al. (2000 [triangle]); Klein et al. (1982 [triangle]); O’Connor & Sinn (1981 [triangle]); Ptasiewicz-Bak et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m558-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5H3N2O2)2(H2O)2]·2H2O
  • M r = 373.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m558-efi1.jpg
  • a = 7.233 (2) Å
  • b = 13.003 (4) Å
  • c = 8.257 (3) Å
  • β = 102.207 (5)°
  • V = 759.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 293 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.838, T max = 0.914
  • 4297 measured reflections
  • 1552 independent reflections
  • 1252 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.081
  • S = 1.08
  • 1552 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006417/cs2069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006417/cs2069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 50590402).

supplementary crystallographic information

Comment

In the past decades, self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have received a great deal of attention in the field of supramolecular chemistry and crystal engineering. Pyrazine carboxylic acids, containing O– or N– donors, are excellent bridging ligands when coordinated to transition metals and have been extensively studied as active ligands in the course of electron-transfer and magnetochemistry research (Klein et al., 1982; O'Connor et al., 1981). The cobalt(II), nickel(II), copper(II), zinc(II) and manganese(II) complexes of the 2-pyrazinecarboxylic acid ligand have been reported (Ciurtin et al., 2002; Dong et al., 2000; Ptasiewicz-Bak et al., 1995). Ptasiewicz-Bak et al. reported an orthorhombic manganese(II) dipyrazinate dihydrate complex (space group Fdd2), in which the coordination polyhedron around the MnII atom is a distorted octahedron with cis positioned water molecules. The title complex is another monomeric complex of MnII with the 2-pyrazinecarboxylic acid ligand, which is isostructrual to the cobalt(II) complex (Ptasiewicz-Bak et al., 1995).

The MnII atom sits on an inversion center and the coordination geometry for the MnII atom (Fig. 1) is distorted octahedral (Table 1). Each MnII atom is axially coordinated by water molecules and consists of an equatorial plane of two oxygen donors and two nitrogen donors from two chelating 2-pyrazinecarboxylato group. As a consequence of the reaction the carboxylic groups of the starting diacid in position 3 are decarboxylated while the coordinated carboxylic groups in 2-position are kept and are deprotonated. The title molecules are connected by the O—H···N and O—H···O hydrogen-bonding interactions (Fig. 2); see Table 2 for the geometric parameters describing these interactions.

Experimental

A mixture of manganese(II) chloride tetrahydrate, (0.4 mmol, 79.2 mg), pyrazine-2,3-dicarboxylic acid (0.8 mmol, 134.5 mg), and H2O (1.0 mol, 18.0 ml) in the molar ratio of 1: 2: 2500 was sealed in a 40 ml stainless steel reactor with Teflon liner and directly heated to 160 °C, kept at 160 °C for 72 h, and then directly cooled to the room temperature. Light-yellow block-shaped crystals of the title complex were collected by filtration and washed with ethanol (2×5 ml) for the structural analysis.

Refinement

All H atoms were initially located in difference Fourier maps and were treated isotropically in the riding-model approximation with C—H = 0.93 Å, O—H = 0.85 Å, Uiso(H) = 1.5Ueq(O), and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the title compound and the atomic numbering scheme, with atom labels and 35% probability displacement ellipsoids for non-H atoms (small spheres for the H atoms).
Fig. 2.
The packing of the title compound viewed down the b axis, showing the hydrogen bond donor-acceptor atoms. H atoms have been omitted for clarity.

Crystal data

[Mn(C5H3N2O2)2(H2O)2]·2H2OF000 = 382
Mr = 373.19Dx = 1.633 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 931 reflections
a = 7.233 (2) Åθ = 3.0–26.4º
b = 13.003 (4) ŵ = 0.91 mm1
c = 8.257 (3) ÅT = 293 (2) K
β = 102.207 (5)ºBlock, light-yellow
V = 759.1 (4) Å30.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer1552 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 293(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −7→9
Tmin = 0.838, Tmax = 0.914k = −16→15
4297 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081  w = 1/[σ2(Fo2) + (0.0336P)2 + 0.3749P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1552 reflectionsΔρmax = 0.33 e Å3
106 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.50000.00000.02497 (15)
C20.3799 (3)0.50843 (18)0.2061 (3)0.0321 (5)
O10.2234 (2)0.40214 (13)−0.0110 (2)0.0374 (4)
N10.2126 (3)0.55522 (15)0.1991 (2)0.0344 (5)
C10.3768 (3)0.41836 (17)0.0906 (3)0.0316 (5)
C50.2082 (4)0.6331 (2)0.3022 (3)0.0449 (6)
H50.09400.66610.30150.054*
O20.5231 (2)0.36634 (14)0.1034 (2)0.0461 (5)
N20.5373 (3)0.62300 (17)0.4146 (3)0.0457 (5)
C30.5411 (3)0.5443 (2)0.3121 (3)0.0388 (6)
H30.65610.51230.31190.047*
C40.3699 (4)0.6661 (2)0.4106 (3)0.0495 (7)
H40.36120.72000.48270.059*
O30.0978 (2)0.60221 (15)−0.1543 (2)0.0554 (5)
H3A0.21450.6136−0.14970.083*
H3B0.03280.6326−0.23860.083*
O40.9068 (3)0.69223 (17)0.5751 (3)0.0703 (7)
H4B0.79310.67980.52660.105*
H4A0.93410.75050.53980.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0141 (2)0.0262 (2)0.0330 (3)0.00080 (19)0.00120 (16)0.0019 (2)
C20.0266 (10)0.0339 (12)0.0354 (12)−0.0008 (10)0.0058 (9)0.0064 (10)
O10.0273 (8)0.0382 (10)0.0439 (10)−0.0004 (7)0.0009 (7)−0.0047 (8)
N10.0285 (10)0.0322 (11)0.0419 (11)0.0015 (8)0.0061 (8)0.0012 (9)
C10.0253 (11)0.0315 (12)0.0388 (13)−0.0017 (9)0.0081 (9)0.0025 (10)
C50.0421 (15)0.0396 (15)0.0527 (16)0.0052 (11)0.0098 (12)−0.0058 (12)
O20.0262 (9)0.0475 (11)0.0635 (12)0.0075 (8)0.0071 (8)−0.0069 (9)
N20.0465 (13)0.0424 (13)0.0438 (13)−0.0070 (10)−0.0005 (10)−0.0009 (10)
C30.0305 (12)0.0406 (13)0.0429 (14)−0.0025 (10)0.0022 (10)0.0032 (12)
C40.0584 (17)0.0384 (15)0.0495 (16)−0.0011 (13)0.0066 (13)−0.0080 (12)
O30.0276 (9)0.0690 (14)0.0664 (13)−0.0023 (8)0.0024 (9)0.0293 (11)
O40.0569 (13)0.0736 (16)0.0679 (14)−0.0166 (11)−0.0148 (11)0.0273 (12)

Geometric parameters (Å, °)

Mn1—O32.0670 (18)C1—O21.242 (3)
Mn1—O3i2.0670 (18)C5—C41.382 (4)
Mn1—O1i2.0738 (16)C5—H50.9300
Mn1—O12.0738 (16)N2—C41.328 (4)
Mn1—N1i2.1246 (19)N2—C31.332 (3)
Mn1—N12.1246 (19)C3—H30.9300
C2—N11.345 (3)C4—H40.9300
C2—C31.383 (3)O3—H3A0.8500
C2—C11.507 (3)O3—H3B0.8500
O1—C11.259 (3)O4—H4B0.8500
N1—C51.328 (3)O4—H4A0.8501
O3—Mn1—O3i180.0C5—N1—Mn1129.97 (17)
O3—Mn1—O1i90.24 (7)C2—N1—Mn1112.20 (15)
O3i—Mn1—O1i89.76 (7)O2—C1—O1125.5 (2)
O3—Mn1—O189.76 (7)O2—C1—C2118.1 (2)
O3i—Mn1—O190.24 (7)O1—C1—C2116.42 (19)
O1i—Mn1—O1180.0N1—C5—C4121.3 (2)
O3—Mn1—N1i91.51 (8)N1—C5—H5119.3
O3i—Mn1—N1i88.49 (8)C4—C5—H5119.3
O1i—Mn1—N1i78.35 (7)C4—N2—C3116.7 (2)
O1—Mn1—N1i101.65 (7)N2—C3—C2122.2 (2)
O3—Mn1—N188.49 (8)N2—C3—H3118.9
O3i—Mn1—N191.51 (8)C2—C3—H3118.9
O1i—Mn1—N1101.65 (7)N2—C4—C5121.9 (3)
O1—Mn1—N178.35 (7)N2—C4—H4119.1
N1i—Mn1—N1180.00 (8)C5—C4—H4119.1
N1—C2—C3120.4 (2)Mn1—O3—H3A123.4
N1—C2—C1115.55 (19)Mn1—O3—H3B126.9
C3—C2—C1124.1 (2)H3A—O3—H3B109.2
C1—O1—Mn1116.93 (15)H4B—O4—H4A106.2
C5—N1—C2117.5 (2)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O4ii0.851.792.639 (3)176
O3—H3A···O2iii0.851.872.715 (2)171
O4—H4A···O2iv0.851.982.806 (3)164
O4—H4B···N20.852.032.865 (3)170

Symmetry codes: (ii) x−1, y, z−1; (iii) −x+1, −y+1, −z; (iv) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2069).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ciurtin, D. M., Smith, M. D. & zur Loye, H. C. (2002). Solid State Sci.4, 461–465.
  • Dong, Y.-B., Smith, M. D. & zur Loye, H. C. (2000). Solid State Sci.2, 861–870.
  • Klein, C. L., Majeste, R. J., Trefonas, L. M. & O’Connor, C. J. (1982). Inorg. Chem.21, 1891–1897.
  • O’Connor, C. J. & Sinn, E. (1981). Inorg. Chem.20, 545–551.
  • Ptasiewicz-Bak, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem.36, 317–326.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography