PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m593–m594.
Published online 2008 March 29. doi:  10.1107/S1600536808007630
PMCID: PMC2960994

Dichloridobis[3-methyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2 N 1,N 5]copper(II) 3.33-hydrate

Abstract

In the title compound, [CuCl2(C14H12N4)2]·3.33H2O, the Cu(II) atom is coordinated by two chelating 3-methyl-4-phenyl-5-(2-pyrid­yl)-1,2,4-triazole ligands and two chloride anions in a distorted octa­hedral geometry with a CuN2N 2Cl2 chromophore. The Cu atom is located on an inversion center. Two uncoordinated water mol­ecules lie on threefold rotation axes with disordered H atoms. Two hydrogen bonds are formed between the water mol­ecules, and another between water and a chlorido ligand.

Related literature

For related literature, see: Bencini et al. (1987 [triangle]); Koningsbruggen et al. (1995 [triangle]); Moliner et al. (1998 [triangle], 2001 [triangle]); Klingele & Brooker (2003 [triangle]); Klingele et al. (2005 [triangle]); Garcia et al. (1997 [triangle]); Lavrenova & Larionov (1998 [triangle]); Kahn & Martinez (1998 [triangle]); Koningsbruggen (2004 [triangle]); Matouzenko et al. (2004 [triangle]); Wang et al. (2005 [triangle]); Zhou et al. (2006a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m593-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C14H12N4)2]·3.33H2O
  • M r = 667.04
  • Rhombohedral, An external file that holds a picture, illustration, etc.
Object name is e-64-0m593-efi1.jpg
  • a = 21.5496 (13) Å
  • c = 17.619 (2) Å
  • V = 7086.0 (10) Å3
  • Z = 9
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 293 (2) K
  • 0.28 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.78, T max = 0.82
  • 12784 measured reflections
  • 3091 independent reflections
  • 2155 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.114
  • S = 1.06
  • 3091 reflections
  • 194 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808007630/cf2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007630/cf2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance though project 8507041056.

supplementary crystallographic information

Comment

The coordination chemistry of 1,2,4-triazole derivatives has attracted great attention in recent years (Bencini et al., 1987; Koningsbruggen et al., 1995; Moliner et al., 1998, 2001; Klingele & Brooker, 2003; Klingele et al., 2005). Some spin-crossover complexes of 1,2,4-triazoles with iron(II) salts have been reported, which could be used as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Lavrenova & Larionov, 1998; Kahn & Martinez, 1998; Koningsbruggen, 2004; Matouzenko et al., 2004). We have synthesized some new 3,4-disubstituted-5-(2-pyridyl)-1,2,4-triazoles and their transition-metal complexes (Wang et al., 2005; Zhou et al., 2006a,b). We report here the crystal structure analysis of the title compound, (I).

The structure of (I) is shown in Fig.1. In the crystal structure, the Cu(II) atom is coordinated by two chelating 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole ligands and two chloride anions in a distorted octahedral geometry with a CuN2N'2Cl2 chromophore. Two hydrogen bonds are formed between the water molecules, and another involves the chloro ligand.

Experimental

To a warm solution of 0.944 g 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (4.0 mmol) in 20 ml e thanol, 0.270 g copper(II) chloride (2.0 mmol) was added. The filtrate was left to stand at room temperature for several days, and blue single crystals suitable for X-ray diffraction were collected.

Refinement

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.93 Å (aromatic), 0.96 Å (methyl) and 0.85 (water), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). O2 and O3 lie on threefold rotation axes, and accordingly, their H atoms are disordered with a partial occupancy of 1/3 and U values in the range 0.64–0.85 Å2.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code i: -x + 1, -y + 2, -z + 2.]

Crystal data

[CuCl2(C14H12N4)2]·3.33H2OZ = 9
Mr = 667.04F000 = 3099
Rhombohedral, R3Dx = 1.407 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71073 Å
a = 21.5496 (13) ÅCell parameters from 3501 reflections
b = 21.5496 (13) Åθ = 2.5–23.9º
c = 17.619 (2) ŵ = 0.91 mm1
α = 90ºT = 293 (2) K
β = 90ºPolyhedron, blue
γ = 120º0.28 × 0.26 × 0.22 mm
V = 7086.0 (10) Å3

Data collection

Bruker SMART APEX CCD diffractometer3091 independent reflections
Radiation source: sealed tube2155 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.055
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −26→26
Tmin = 0.78, Tmax = 0.82k = −21→26
12784 measured reflectionsl = −21→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.114  w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3091 reflectionsΔρmax = 0.31 e Å3
194 parametersΔρmin = −0.82 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.50001.00001.00000.04781 (19)
C10.56211 (17)0.87212 (17)0.88733 (16)0.0408 (7)
C20.54547 (13)0.96307 (14)0.86885 (15)0.0280 (6)
C30.53495 (14)1.02034 (15)0.84128 (15)0.0292 (6)
C40.54676 (16)1.04762 (16)0.76855 (16)0.0366 (7)
H40.56261.02870.73070.044*
C50.53496 (19)1.10252 (19)0.75306 (16)0.0459 (8)
H50.54161.12060.70400.055*
C60.51311 (18)1.13172 (19)0.80953 (16)0.0444 (8)
H60.50531.16960.79950.053*
C70.50315 (17)1.10251 (16)0.88239 (17)0.0412 (7)
H70.48941.12220.92140.049*
C80.57362 (19)0.81162 (17)0.87105 (17)0.0445 (8)
H8A0.61360.81670.90010.067*
H8B0.58340.81120.81790.067*
H8C0.53140.76750.88450.067*
C90.56300 (18)0.90787 (16)0.74991 (16)0.0380 (7)
C100.4997 (2)0.86341 (18)0.71288 (19)0.0504 (8)
H100.45650.83950.73890.061*
C110.5032 (2)0.8556 (2)0.6345 (2)0.0574 (9)
H110.46170.82620.60720.069*
C120.56770 (19)0.89132 (18)0.59789 (17)0.0458 (8)
H120.56960.88590.54570.055*
C130.6281 (2)0.9340 (2)0.6358 (2)0.0563 (9)
H130.67110.95790.60930.068*
C140.62835 (19)0.94346 (18)0.71455 (19)0.0509 (8)
H140.67040.97220.74130.061*
N40.54193 (13)0.94977 (13)0.94163 (13)0.0361 (6)
N50.55287 (15)0.89213 (14)0.95473 (14)0.0411 (6)
N60.55975 (13)0.91589 (13)0.83203 (13)0.0333 (5)
N70.51276 (12)1.04744 (13)0.89762 (13)0.0356 (6)
Cl10.37209 (5)0.88666 (5)0.95079 (5)0.0581 (3)
O10.38596 (12)0.77383 (11)0.85941 (11)0.0424 (5)
H1D0.38250.80540.88500.051*
H1A0.34440.74090.84650.051*
O20.33330.66670.7377 (2)0.0567 (11)
H2A0.28950.63590.73040.068*0.334
H2B0.35040.69250.69830.068*0.334
O30.66670.33330.70495 (19)0.0428 (9)
H3A0.66500.31030.66510.051*0.3333
H3C0.64740.30420.74160.051*0.3333

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0484 (3)0.0501 (4)0.0456 (4)0.0251 (3)0.0044 (3)0.0055 (3)
C10.0531 (19)0.0518 (18)0.0298 (17)0.0356 (16)0.0098 (14)0.0032 (14)
C20.0275 (14)0.0340 (15)0.0229 (13)0.0158 (12)0.0030 (11)−0.0039 (11)
C30.0295 (14)0.0369 (15)0.0227 (13)0.0178 (12)0.0003 (11)−0.0025 (11)
C40.0469 (17)0.0542 (18)0.0184 (13)0.0326 (15)−0.0003 (12)−0.0004 (13)
C50.062 (2)0.068 (2)0.0205 (14)0.0417 (19)0.0051 (14)0.0132 (15)
C60.064 (2)0.062 (2)0.0292 (15)0.0477 (18)0.0059 (15)0.0107 (15)
C70.060 (2)0.0531 (19)0.0302 (15)0.0429 (16)0.0118 (14)0.0119 (14)
C80.065 (2)0.052 (2)0.0315 (17)0.0406 (18)0.0071 (15)0.0038 (14)
C90.064 (2)0.0440 (17)0.0176 (14)0.0356 (16)0.0047 (14)−0.0010 (12)
C100.064 (2)0.053 (2)0.0408 (18)0.0341 (18)0.0118 (17)0.0035 (16)
C110.062 (2)0.070 (2)0.0377 (19)0.031 (2)−0.0055 (18)−0.0072 (18)
C120.070 (2)0.057 (2)0.0244 (16)0.0420 (19)0.0051 (16)−0.0025 (14)
C130.063 (2)0.068 (2)0.042 (2)0.036 (2)−0.0001 (18)0.0004 (18)
C140.050 (2)0.055 (2)0.0416 (19)0.0214 (17)−0.0045 (16)−0.0022 (16)
N40.0456 (14)0.0424 (14)0.0237 (13)0.0245 (12)0.0007 (10)0.0104 (10)
N50.0589 (17)0.0484 (15)0.0291 (13)0.0367 (14)0.0058 (12)0.0062 (11)
N60.0484 (15)0.0400 (13)0.0197 (11)0.0282 (12)0.0069 (10)−0.0004 (10)
N70.0401 (13)0.0454 (14)0.0329 (13)0.0303 (12)−0.0029 (11)−0.0059 (11)
Cl10.0439 (5)0.0671 (6)0.0520 (5)0.0191 (4)0.0020 (4)0.0033 (4)
O10.0534 (13)0.0488 (13)0.0327 (11)0.0313 (11)0.0046 (10)0.0029 (10)
O20.0633 (16)0.0633 (16)0.043 (3)0.0317 (8)0.0000.000
O30.0519 (14)0.0519 (14)0.0245 (18)0.0259 (7)0.0000.000

Geometric parameters (Å, °)

Cu1—N4i2.006 (2)C8—H8A0.960
Cu1—N42.006 (2)C8—H8B0.960
Cu1—N72.023 (2)C8—H8C0.960
Cu1—N7i2.023 (2)C9—C141.371 (5)
Cu1—Cl12.7537 (9)C9—C101.377 (5)
Cu1—Cl1i2.7537 (9)C9—N61.463 (3)
C1—N51.312 (4)C10—C111.398 (5)
C1—N61.375 (4)C10—H100.930
C1—C81.472 (4)C11—C121.368 (5)
C2—N41.308 (3)C11—H110.930
C2—N61.365 (3)C12—C131.338 (5)
C2—C31.446 (4)C12—H120.930
C3—N71.354 (3)C13—C141.402 (5)
C3—C41.380 (4)C13—H130.930
C4—C51.356 (4)C14—H140.930
C4—H40.930N4—N51.395 (3)
C5—C61.380 (4)O1—H1D0.850
C5—H50.930O1—H1A0.850
C6—C71.398 (4)O2—H2A0.850
C6—H60.930O2—H2B0.8499
C7—N71.330 (4)O3—H3A0.850
C7—H70.930O3—H3C0.850
N4i—Cu1—N4180.000 (1)C1—C8—H8B109.5
N4i—Cu1—N799.70 (9)H8A—C8—H8B109.5
N4—Cu1—N780.30 (9)C1—C8—H8C109.5
N4i—Cu1—N7i80.30 (9)H8A—C8—H8C109.5
N4—Cu1—N7i99.70 (9)H8B—C8—H8C109.5
N7—Cu1—N7i180.000 (1)C14—C9—C10123.8 (3)
N4i—Cu1—Cl196.83 (8)C14—C9—N6118.7 (3)
N4—Cu1—Cl183.17 (8)C10—C9—N6117.5 (3)
N7—Cu1—Cl189.45 (7)C9—C10—C11117.3 (3)
N4i—Cu1—Cl1i83.17 (8)C9—C10—H10121.4
N4—Cu1—Cl1i96.83 (8)C11—C10—H10121.4
N7—Cu1—Cl1i90.55 (7)C12—C11—C10119.9 (3)
N7i—Cu1—Cl1i89.45 (7)C12—C11—H11120.1
Cl1—Cu1—Cl1i180.00 (4)C10—C11—H11120.1
N5—C1—N6110.6 (3)C13—C12—C11121.2 (3)
N5—C1—C8126.0 (3)C13—C12—H12119.4
N6—C1—C8123.4 (3)C11—C12—H12119.4
N4—C2—N6108.2 (2)C12—C13—C14121.7 (3)
N4—C2—C3120.0 (2)C12—C13—H13119.2
N6—C2—C3131.8 (2)C14—C13—H13119.2
N7—C3—C4121.8 (3)C9—C14—C13116.1 (3)
N7—C3—C2111.2 (2)C9—C14—H14121.9
C4—C3—C2127.0 (2)C13—C14—H14121.9
C5—C4—C3118.9 (3)C2—N4—N5109.9 (2)
C5—C4—H4120.5C2—N4—Cu1112.15 (18)
C3—C4—H4120.5N5—N4—Cu1135.90 (18)
C4—C5—C6120.6 (3)C1—N5—N4105.3 (2)
C4—C5—H5119.7C2—N6—C1105.9 (2)
C6—C5—H5119.7C2—N6—C9126.9 (2)
C5—C6—C7117.9 (3)C1—N6—C9126.8 (2)
C5—C6—H6121.1C7—N7—C3118.9 (3)
C7—C6—H6121.1C7—N7—Cu1126.0 (2)
N7—C7—C6122.0 (3)C3—N7—Cu1115.07 (19)
N7—C7—H7119.0H1D—O1—H1A109.5
C6—C7—H7119.0H2A—O2—H2B109.5
C1—C8—H8A109.5H3A—O3—H3C109.5

Symmetry codes: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl10.852.203.053 (2)179
O1—H1A···O20.852.432.932 (3)119
O2—H2B···O2ii0.851.882.505 (8)130

Symmetry codes: (ii) −x+2/3, −y+4/3, −z+4/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2182).

References

  • Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987). J. Am. Chem. Soc.109, 2926–2931.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem.7, 857–858.
  • Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.
  • Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.
  • Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev.241, 119–132.
  • Koningsbruggen, P. J. (2004). Top. Curr. Chem.233, 123–149.
  • Koningsbruggen, P. J., Gatteshi, D., Graaff, R. A. G., Hassnoot, J. G., Reedijk, J. & Zanchini, C. (1995). Inorg. Chem.34, 5175–5182.
  • Lavrenova, L. G. & Larionov, S. V. (1998). Russ. J. Coord. Chem.24, 379–395.
  • Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem.43, 227–236. [PubMed]
  • Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem.40, 3986–3991. [PubMed]
  • Moliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998). Inorg. Chim. Acta, 274, 1–6.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034.
  • Zhou, A.-Y., Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2006b). Acta Cryst. E62, m591–m592.
  • Zhou, B. G., Wang, Z. X., Qiao, X. Y. & Liu, C. Y. (2006a). Acta Cryst. E62, m3176–m3177.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography