PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m543.
Published online 2008 March 14. doi:  10.1107/S1600536808003577
PMCID: PMC2960991

Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}bis­[(thio­cyanato)manganese(III)]

Abstract

The reported structure is a monoclinic polymorph of the title compound, [Mn2(C16H14N2O2)2(NCS)2], which has been characterized previously in an ortho­rhom­bic form. Each MnIII atom is chelated by a tetra­dentate 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand and by the N atom of a thio­cyanate anion, in a square-pyramidal arrangement. The complexes form centrosymmetric dimers, with an Mn—O contact of 2.557 (3) Å trans to each thio­cyanate anion, completing a distorted octa­hedral coordination geometry.

Related literature

For the ortho­rhom­bic polymorph, see: Mikuriya et al. (1992 [triangle]); Li et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m543-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C16H14N2O2)2(NCS)2]
  • M r = 758.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m543-efi1.jpg
  • a = 9.0026 (10) Å
  • b = 14.0629 (16) Å
  • c = 14.9884 (17) Å
  • β = 106.848 (1)°
  • V = 1816.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.710, T max = 0.834
  • 13254 measured reflections
  • 3296 independent reflections
  • 2627 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.231
  • S = 1.00
  • 3296 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 1.47 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003577/bi2278sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003577/bi2278Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from Henan University (grant No. 05YBGG013).

supplementary crystallographic information

Comment

As shown in Fig. 1, the Mn atom is chelated by two N and two O atoms of the N,N'-ethylenebis(salicylideneamine) ligand and by the N atom of the thiocyanate anion in the apical site. The Mn—N and Mn—O bond lengths are in the range of 1.979 (4)–2.181 (5) and 1.874 (3)–1.902 (3) %A, respectively (Table 1).

Experimental

A mixture of manganese(III) acetate (1 mmol) and N,N'-bis(2-hydroxybenzyl)ethylenediamine (1 mmol) in 20 ml me thanol was refluxed for several hours. The solution was then cooled and filtered, and the filtrate was left to evaporate at room temperature. Pink blocks of the title compound were obtained after 2 days with a yield of 12%. Elemental analysis calculated: C 53.72, H 3.67, N 5.49%; found: C 53.78, H 3.69, N 5.54%.

Refinement

H atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2 Ueq(C). The phenyl rings were constrained to have regular hexagonal geometry.

Figures

Fig. 1.
Asymmetric unit drawn with 30% probability displacement ellipsoids for the non-H atoms.

Crystal data

[Mn2(C16H14N2O2)2(NCS)2]F000 = 776
Mr = 758.62Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4497 reflections
a = 9.0026 (10) Åθ = 2.4–24.4º
b = 14.0629 (16) ŵ = 0.86 mm1
c = 14.9884 (17) ÅT = 293 (2) K
β = 106.848 (1)ºBlock, pink
V = 1816.1 (4) Å30.43 × 0.28 × 0.22 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3296 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 295(2) Kθmax = 25.3º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −10→10
Tmin = 0.710, Tmax = 0.834k = −16→16
13254 measured reflectionsl = −18→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.231  w = 1/[σ2(Fo2) + (0.147P)2 + 2.2875P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.013
3296 reflectionsΔρmax = 1.47 e Å3
193 parametersΔρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.64485 (8)0.01038 (5)0.10349 (5)0.0575 (3)
C10.8655 (4)0.1314 (2)0.0466 (3)0.0705 (14)
C20.9625 (5)0.1411 (3)−0.0101 (3)0.093 (2)
H20.97660.0902−0.04650.112*
C31.0384 (5)0.2267 (4)−0.0124 (4)0.124 (3)
H31.10330.2332−0.05030.148*
C41.0173 (6)0.3027 (3)0.0420 (4)0.146 (4)
H41.06810.36000.04040.175*
C50.9204 (6)0.2931 (3)0.0987 (4)0.128 (3)
H50.90630.34390.13510.153*
C60.8445 (5)0.2074 (3)0.1010 (3)0.0848 (17)
C70.9436 (7)−0.0871 (3)0.2500 (4)0.0640 (12)
C80.7500 (9)0.2027 (5)0.1635 (4)0.098 (2)
H80.74660.25680.19860.117*
C90.5841 (12)0.1325 (5)0.2457 (5)0.117 (3)
H9A0.56290.19770.25920.140*
H9B0.64510.10270.30300.140*
C100.4299 (12)0.0775 (6)0.2049 (7)0.125 (3)
H10A0.38260.06160.25350.150*
H10B0.35710.11470.15740.150*
C110.4148 (7)−0.0916 (5)0.1681 (4)0.0801 (16)
H110.3420−0.09520.20110.096*
C120.4489 (4)−0.1778 (2)0.1251 (2)0.0686 (13)
C130.4001 (5)−0.2635 (3)0.1534 (3)0.0921 (19)
H130.3496−0.26410.19940.110*
C140.4266 (6)−0.3482 (2)0.1127 (3)0.106 (2)
H140.3939−0.40550.13160.128*
C150.5020 (5)−0.34726 (18)0.0439 (3)0.0937 (19)
H150.5197−0.40400.01670.112*
C160.5508 (4)−0.2616 (2)0.0156 (2)0.0723 (14)
H160.6013−0.2610−0.03040.087*
C170.5243 (4)−0.17685 (18)0.0563 (2)0.0592 (11)
N10.6693 (7)0.1302 (3)0.1756 (3)0.0799 (13)
N20.4777 (6)−0.0108 (3)0.1639 (3)0.0737 (12)
N30.8165 (6)−0.0691 (4)0.2100 (4)0.0823 (13)
O10.7880 (4)0.0494 (3)0.0418 (3)0.0692 (9)
O20.5682 (4)−0.0941 (2)0.0227 (2)0.0574 (8)
S11.11942 (18)−0.11754 (13)0.30794 (13)0.0894 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0669 (5)0.0504 (5)0.0598 (5)0.0061 (3)0.0259 (4)−0.0011 (3)
C10.057 (3)0.066 (3)0.080 (3)−0.005 (2)0.005 (2)0.012 (3)
C20.061 (3)0.089 (4)0.127 (6)−0.007 (3)0.023 (3)0.022 (4)
C30.076 (4)0.120 (7)0.159 (8)−0.037 (4)0.010 (4)0.042 (6)
C40.117 (7)0.112 (7)0.162 (9)−0.061 (6)−0.034 (6)0.028 (6)
C50.133 (7)0.085 (5)0.123 (6)−0.041 (5)−0.029 (5)0.002 (4)
C60.091 (4)0.068 (3)0.075 (4)−0.012 (3)−0.009 (3)−0.001 (3)
C70.080 (3)0.051 (3)0.066 (3)0.006 (2)0.029 (3)0.010 (2)
C80.130 (6)0.064 (4)0.071 (4)0.009 (4)−0.015 (4)−0.016 (3)
C90.190 (9)0.082 (5)0.090 (5)0.030 (5)0.058 (5)−0.015 (4)
C100.169 (8)0.110 (6)0.130 (6)0.039 (6)0.098 (6)−0.011 (5)
C110.079 (3)0.105 (5)0.067 (3)0.013 (3)0.037 (3)0.023 (3)
C120.061 (3)0.079 (3)0.066 (3)0.000 (2)0.018 (2)0.020 (3)
C130.090 (4)0.102 (5)0.084 (4)−0.019 (4)0.025 (3)0.030 (4)
C140.111 (5)0.073 (4)0.124 (6)−0.021 (4)0.017 (5)0.035 (4)
C150.090 (4)0.058 (3)0.126 (6)0.000 (3)0.021 (4)0.010 (3)
C160.070 (3)0.053 (3)0.093 (4)0.003 (2)0.021 (3)0.005 (2)
C170.055 (2)0.054 (2)0.068 (3)0.001 (2)0.017 (2)0.006 (2)
N10.114 (4)0.061 (3)0.061 (3)0.016 (3)0.020 (2)−0.006 (2)
N20.085 (3)0.079 (3)0.070 (3)0.015 (2)0.043 (2)0.006 (2)
N30.085 (3)0.078 (3)0.082 (3)0.016 (3)0.020 (3)0.011 (2)
O10.069 (2)0.060 (2)0.084 (2)−0.0027 (16)0.0313 (18)−0.0004 (17)
O20.0661 (19)0.0491 (16)0.0641 (18)0.0026 (14)0.0302 (15)0.0026 (14)
S10.0697 (9)0.0979 (12)0.1010 (12)0.0079 (8)0.0256 (8)0.0270 (9)

Geometric parameters (Å, °)

Mn1—O11.874 (3)C9—N11.469 (9)
Mn1—O21.902 (3)C9—C101.552 (13)
Mn1—N11.979 (4)C9—H9A0.970
Mn1—N21.990 (5)C9—H9B0.970
Mn1—N32.181 (5)C10—N21.503 (8)
Mn1—O2i2.557 (3)C10—H10A0.970
C1—O11.339 (4)C10—H10B0.970
C1—C21.390C11—N21.280 (8)
C1—C61.390C11—C121.447 (7)
C2—C31.390C11—H110.930
C2—H20.930C12—C131.390
C3—C41.390C12—C171.390
C3—H30.930C13—C141.390
C4—C51.390C13—H130.930
C4—H40.930C14—C151.390
C5—C61.390C14—H140.930
C5—H50.930C15—C161.390
C6—C81.439 (9)C15—H150.930
C7—N31.155 (7)C16—C171.390
C7—S11.627 (6)C16—H160.930
C8—N11.295 (9)C17—O21.371 (4)
C8—H80.930
O1—Mn1—O294.95 (14)N1—C9—H9B110.2
O1—Mn1—N192.1 (2)C10—C9—H9B110.2
O1—Mn1—N2170.90 (17)H9A—C9—H9B108.5
O1—Mn1—N393.94 (18)N2—C10—C9104.1 (6)
O1—Mn1—O2i88.62 (15)N2—C10—H10A110.9
O2—Mn1—N1165.40 (19)C9—C10—H10A110.9
O2—Mn1—N289.51 (17)N2—C10—H10B110.9
O2—Mn1—N396.85 (17)C9—C10—H10B110.9
O2—Mn1—O2i80.14 (14)H10A—C10—H10B109.0
N1—Mn1—N281.9 (2)N2—C11—C12124.6 (5)
N1—Mn1—N395.4 (2)N2—C11—H11117.7
N1—Mn1—O2i87.29 (16)C12—C11—H11117.7
N2—Mn1—N393.4 (2)C13—C12—C17120.0
N2—Mn1—O2i84.35 (17)C13—C12—C11117.6 (3)
N3—Mn1—O2i176.24 (17)C17—C12—C11122.3 (3)
O1—C1—C2117.4 (3)C12—C13—C14120.0
O1—C1—C6122.4 (3)C12—C13—H13120.0
C2—C1—C6120.0C14—C13—H13120.0
C3—C2—C1120.0C13—C14—C15120.0
C3—C2—H2120.0C13—C14—H14120.0
C1—C2—H2120.0C15—C14—H14120.0
C2—C3—C4120.0C14—C15—C16120.0
C2—C3—H3120.0C14—C15—H15120.0
C4—C3—H3120.0C16—C15—H15120.0
C5—C4—C3120.0C17—C16—C15120.0
C5—C4—H4120.0C17—C16—H16120.0
C3—C4—H4120.0C15—C16—H16120.0
C4—C5—C6120.0O2—C17—C16117.5 (2)
C4—C5—H5120.0O2—C17—C12122.4 (2)
C6—C5—H5120.0C16—C17—C12120.0
C5—C6—C1120.0C8—N1—C9120.8 (6)
C5—C6—C8116.3 (4)C8—N1—Mn1124.9 (4)
C1—C6—C8123.6 (4)C9—N1—Mn1114.2 (4)
N3—C7—S1177.1 (5)C11—N2—C10122.0 (6)
N1—C8—C6126.1 (5)C11—N2—Mn1124.0 (4)
N1—C8—H8117.0C10—N2—Mn1114.0 (5)
C6—C8—H8117.0C7—N3—Mn1151.3 (5)
N1—C9—C10107.5 (6)C1—O1—Mn1130.4 (3)
N1—C9—H9A110.2C17—O2—Mn1120.8 (2)
C10—C9—H9A110.2

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2278).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem.41, 183–189.
  • Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466–1468.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography