PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o657.
Published online 2008 March 5. doi:  10.1107/S1600536808005515
PMCID: PMC2960983

2-(Methyl­sulfan­yl)cyclo­dodeca­none tosyl­hydrazone

Abstract

The title compound, C20H32N2O2S2, has been synthesized by the reaction of α-methyl­sulfanylcyclo­dodeca­none and p-toluene­sulfonyl­hydrazine. In the crystal structure, the conformation of the non-benzenoid ring is [3333] and the methyl­sulfanyl group is in the α-side exo position. The mol­ecules are linked by inter­molecular N—H(...)S hydrogen bonds.

Related literature

For related literature, see: Li et al.(2005 [triangle]); Lu et al. (2004 [triangle]); Song et al. (2005 [triangle]); Wang et al. (2002 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o657-scheme1.jpg

Experimental

Crystal data

  • C20H32N2O2S2
  • M r = 396.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o657-efi1.jpg
  • a = 8.4374 (7) Å
  • b = 11.5276 (10) Å
  • c = 21.7836 (19) Å
  • β = 92.530 (2)°
  • V = 2116.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 293 (2) K
  • 0.47 × 0.38 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.778, T max = 1.000 (expected range = 0.722–0.929)
  • 12199 measured reflections
  • 4615 independent reflections
  • 3650 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.131
  • S = 1.03
  • 4615 reflections
  • 241 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005515/fl2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005515/fl2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support of this investigation by the National Basic Research Program of China (2003CB114407).

supplementary crystallographic information

Comment

Many derivatives of cyclododecanone have bioactivity that has attracted much attention from chemists (Song et al., 2005; Li et al., 2005). In order to understand the structure-activity relationships of these materials, it is necessary to study their stereochemistry and overall conformation. We have studied a number of α-monosubstituted cyclododecanones with some fruitful results (Wang et al.,2002; Lu et al.., 2004). Recently, we found a very interesting conformational phenomenon in the condensation products resulting from on the reactions of α-monosubstituted cyclododecanones with hydroxylamine and thiosemicarbazide (Wang et al., 2007). In these compounds the parent ring has a [3333] conformation and the substituting group is at the α-side-exo or α-corner-antiposition. These results were rationalized by "corner-position carbonyl participation" of raw materials, memory effects and H-bonding between amine derivatives and α-monosubstituted cyclododecanones. To further understand the above results, we synthesized the title compound (I) by the reaction of α-methylsulfanylcyclododecanone and p-toluenesulfonylhydrazine. The X-ray analysis further confirmed the validity of our proposed explanation.

The molecular structure of the title compound is given in Fig.1. In the crystal, the parent ring has the [3333] conformation found in the other molecules and the methylsulfanyl group is at α-side-exo position. The molecules are linked by intermolecular N—H···S hydrogen bonds (Table 1 and Fig.2).

Experimental

α-Methylsulfanylcyclododecanone(228 mg, 1.0 mmol) was dissolved in 10 ml absolute ethanol along with p-toluenesulfonylhydrazine (279 mg, 1.5 mmol) and a catalytic amount of p-toluenesulfonic acid. The reaction mixture was heated to reflux under nitrogen for 5 h and cooled. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (200–300 mesh) using hexane/ethyl acetate (10:1,v/v) as the eluent, and recrystallized from methanol to give a pure colorless crystal (yield 76%, m.p. 136–138 °C) suitable for X-ray diffraction.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. The carbon-bound H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model with Uiso (H) = 1.2 or 1.5(methyl) Ueq (parent atom). The H atoms attached to N2 was located in a difference Fourier map, and was refined with a distance of N–H 0.85 (1) Å.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of (I). Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C20H32N2O2S2F000 = 856
Mr = 396.60Dx = 1.245 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 8.4374 (7) ÅCell parameters from 3644 reflections
b = 11.5276 (10) Åθ = 4.8–55.1º
c = 21.7836 (19) ŵ = 0.27 mm1
β = 92.530 (2)ºT = 293 (2) K
V = 2116.7 (3) Å3Prismatic, colorless
Z = 40.47 × 0.38 × 0.28 mm

Data collection

Bruker SMART CCD area-detector diffractometer4615 independent reflections
Radiation source: fine-focus sealed tube3650 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.061
T = 293(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.778, Tmax = 1.000k = −14→13
12199 measured reflectionsl = −27→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131  w = 1/[σ2(Fo2) + (0.0655P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4615 reflectionsΔρmax = 0.41 e Å3
241 parametersΔρmin = −0.23 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.84188 (7)0.86341 (5)0.29057 (3)0.05522 (19)
S20.28829 (5)1.10533 (4)0.20128 (2)0.03749 (15)
O10.24538 (17)1.21632 (12)0.17655 (6)0.0515 (4)
O20.19940 (15)1.00460 (12)0.18414 (7)0.0490 (4)
N10.53858 (18)0.97987 (13)0.19883 (7)0.0360 (4)
N20.47071 (18)1.08519 (14)0.17949 (7)0.0372 (4)
C10.6872 (2)0.96614 (16)0.19183 (8)0.0358 (4)
C20.8013 (2)1.05110 (18)0.16582 (9)0.0427 (5)
H2A0.89641.05410.19250.051*
H2B0.75361.12770.16550.051*
C30.8478 (2)1.02089 (19)0.10087 (9)0.0471 (5)
H3A0.93031.07390.08890.056*
H3B0.89180.94310.10100.056*
C40.7115 (3)1.0267 (2)0.05364 (10)0.0529 (6)
H4A0.67461.10630.05070.063*
H4B0.62490.97990.06780.063*
C50.7525 (3)0.9853 (2)−0.01033 (10)0.0611 (6)
H5A0.66541.0047−0.03910.073*
H5B0.84561.0269−0.02290.073*
C60.7844 (3)0.8560 (2)−0.01425 (11)0.0636 (7)
H6A0.86640.83600.01650.076*
H6B0.82550.8393−0.05420.076*
C70.6409 (3)0.7787 (2)−0.00514 (11)0.0666 (7)
H7A0.56380.82160.01750.080*
H7B0.59210.7598−0.04510.080*
C80.6798 (3)0.6672 (2)0.02873 (12)0.0710 (7)
H8A0.76440.62800.00830.085*
H8B0.58740.61720.02620.085*
C90.7308 (3)0.6842 (2)0.09646 (11)0.0596 (6)
H9A0.77500.61190.11230.072*
H9B0.81410.74220.09930.072*
C100.5981 (3)0.72134 (18)0.13636 (10)0.0491 (5)
H10A0.51830.66070.13550.059*
H10B0.54910.79040.11860.059*
C110.6475 (3)0.74684 (18)0.20316 (10)0.0495 (5)
H11A0.55270.75980.22590.059*
H11B0.70060.67900.22060.059*
C120.7559 (2)0.85050 (17)0.21215 (9)0.0434 (5)
H120.84550.83640.18600.052*
C130.6686 (3)0.8781 (2)0.33481 (11)0.0699 (7)
H13A0.60900.94470.32080.105*
H13B0.70000.88770.37740.105*
H13C0.60410.80990.32990.105*
C140.2972 (2)1.11577 (16)0.28203 (9)0.0368 (4)
C150.3174 (2)1.22352 (17)0.30923 (9)0.0429 (5)
H150.32521.28960.28510.051*
C160.3258 (2)1.23198 (18)0.37211 (10)0.0485 (5)
H160.33841.30450.39030.058*
C170.3159 (3)1.13478 (19)0.40892 (10)0.0481 (5)
C180.2959 (3)1.02835 (18)0.38062 (10)0.0530 (6)
H180.28960.96220.40480.064*
C190.2849 (3)1.01732 (17)0.31766 (10)0.0475 (5)
H190.26950.94500.29950.057*
C200.3224 (4)1.1469 (2)0.47810 (11)0.0711 (7)
H20A0.36081.22280.48930.107*
H20B0.39241.08920.49590.107*
H20C0.21801.13650.49310.107*
H20.522 (2)1.1482 (14)0.1827 (10)0.049 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0623 (4)0.0541 (4)0.0480 (3)0.0090 (3)−0.0123 (3)0.0002 (3)
S20.0374 (3)0.0370 (3)0.0381 (3)0.00631 (19)0.0012 (2)−0.0006 (2)
O10.0597 (9)0.0459 (8)0.0486 (9)0.0192 (7)−0.0012 (7)0.0047 (7)
O20.0430 (8)0.0507 (8)0.0529 (9)−0.0030 (6)−0.0030 (7)−0.0071 (7)
N10.0418 (9)0.0335 (8)0.0328 (8)0.0047 (7)0.0035 (7)0.0019 (6)
N20.0411 (9)0.0334 (9)0.0376 (9)0.0032 (7)0.0054 (7)0.0024 (7)
C10.0411 (10)0.0376 (10)0.0287 (9)0.0050 (8)0.0016 (8)−0.0046 (8)
C20.0384 (10)0.0427 (11)0.0473 (12)−0.0002 (8)0.0047 (9)−0.0063 (9)
C30.0393 (10)0.0561 (13)0.0464 (12)0.0003 (9)0.0094 (9)0.0025 (10)
C40.0492 (12)0.0631 (15)0.0466 (13)0.0093 (11)0.0049 (10)0.0085 (11)
C50.0593 (14)0.0856 (18)0.0387 (12)0.0064 (13)0.0036 (11)0.0137 (12)
C60.0608 (15)0.0898 (19)0.0408 (13)0.0071 (13)0.0102 (11)−0.0017 (12)
C70.0725 (16)0.0837 (18)0.0426 (13)0.0016 (14)−0.0079 (12)−0.0062 (13)
C80.0862 (19)0.0698 (17)0.0574 (16)0.0073 (14)0.0065 (14)−0.0220 (13)
C90.0712 (15)0.0528 (14)0.0546 (14)0.0144 (12)0.0005 (12)−0.0008 (11)
C100.0562 (13)0.0407 (11)0.0504 (13)−0.0028 (10)0.0011 (10)−0.0023 (10)
C110.0623 (13)0.0387 (11)0.0476 (13)0.0007 (10)0.0046 (11)0.0055 (9)
C120.0467 (11)0.0448 (12)0.0386 (11)0.0081 (9)0.0012 (9)−0.0022 (9)
C130.099 (2)0.0649 (16)0.0459 (14)0.0174 (14)0.0083 (14)−0.0074 (12)
C140.0350 (9)0.0365 (10)0.0395 (11)0.0030 (8)0.0065 (8)0.0005 (8)
C150.0470 (11)0.0355 (10)0.0466 (12)−0.0006 (9)0.0078 (9)0.0014 (9)
C160.0549 (12)0.0418 (11)0.0491 (13)−0.0045 (10)0.0067 (10)−0.0073 (10)
C170.0495 (12)0.0550 (13)0.0402 (12)−0.0020 (10)0.0069 (10)−0.0008 (10)
C180.0706 (14)0.0430 (12)0.0462 (13)0.0004 (11)0.0127 (11)0.0095 (10)
C190.0621 (13)0.0336 (10)0.0476 (12)0.0014 (9)0.0116 (10)−0.0019 (9)
C200.093 (2)0.0784 (18)0.0421 (13)−0.0100 (15)0.0074 (14)−0.0047 (12)

Geometric parameters (Å, °)

S1—C131.794 (3)C8—H8A0.9700
S1—C121.832 (2)C8—H8B0.9700
S2—O21.4232 (14)C9—C101.509 (3)
S2—O11.4287 (14)C9—H9A0.9700
S2—N21.6470 (16)C9—H9B0.9700
S2—C141.761 (2)C10—C111.524 (3)
N1—C11.280 (2)C10—H10A0.9700
N1—N21.399 (2)C10—H10B0.9700
N2—H20.846 (15)C11—C121.512 (3)
C1—C21.501 (3)C11—H11A0.9700
C1—C121.512 (3)C11—H11B0.9700
C2—C31.525 (3)C12—H120.9800
C2—H2A0.9700C13—H13A0.9600
C2—H2B0.9700C13—H13B0.9600
C3—C41.510 (3)C13—H13C0.9600
C3—H3A0.9700C14—C191.382 (3)
C3—H3B0.9700C14—C151.383 (3)
C4—C51.527 (3)C15—C161.372 (3)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.383 (3)
C5—C61.517 (3)C16—H160.9300
C5—H5A0.9700C17—C181.380 (3)
C5—H5B0.9700C17—C201.512 (3)
C6—C71.524 (3)C18—C191.376 (3)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—H190.9300
C7—C81.510 (3)C20—H20A0.9600
C7—H7A0.9700C20—H20B0.9600
C7—H7B0.9700C20—H20C0.9600
C8—C91.531 (3)
C13—S1—C12102.13 (11)H8A—C8—H8B107.6
O2—S2—O1120.65 (9)C10—C9—C8114.0 (2)
O2—S2—N2107.32 (8)C10—C9—H9A108.7
O1—S2—N2104.01 (9)C8—C9—H9A108.7
O2—S2—C14108.44 (9)C10—C9—H9B108.7
O1—S2—C14108.32 (8)C8—C9—H9B108.7
N2—S2—C14107.36 (9)H9A—C9—H9B107.6
C1—N1—N2117.49 (15)C9—C10—C11115.22 (18)
N1—N2—S2114.25 (12)C9—C10—H10A108.5
N1—N2—H2121.3 (14)C11—C10—H10A108.5
S2—N2—H2109.5 (15)C9—C10—H10B108.5
N1—C1—C2127.74 (17)C11—C10—H10B108.5
N1—C1—C12116.03 (17)H10A—C10—H10B107.5
C2—C1—C12116.23 (16)C12—C11—C10114.46 (17)
C1—C2—C3113.37 (16)C12—C11—H11A108.6
C1—C2—H2A108.9C10—C11—H11A108.6
C3—C2—H2A108.9C12—C11—H11B108.6
C1—C2—H2B108.9C10—C11—H11B108.6
C3—C2—H2B108.9H11A—C11—H11B107.6
H2A—C2—H2B107.7C1—C12—C11115.91 (17)
C4—C3—C2113.72 (17)C1—C12—S1109.40 (13)
C4—C3—H3A108.8C11—C12—S1113.40 (15)
C2—C3—H3A108.8C1—C12—H12105.8
C4—C3—H3B108.8C11—C12—H12105.8
C2—C3—H3B108.8S1—C12—H12105.8
H3A—C3—H3B107.7S1—C13—H13A109.5
C3—C4—C5114.30 (18)S1—C13—H13B109.5
C3—C4—H4A108.7H13A—C13—H13B109.5
C5—C4—H4A108.7S1—C13—H13C109.5
C3—C4—H4B108.7H13A—C13—H13C109.5
C5—C4—H4B108.7H13B—C13—H13C109.5
H4A—C4—H4B107.6C19—C14—C15120.52 (19)
C6—C5—C4114.00 (19)C19—C14—S2120.27 (15)
C6—C5—H5A108.8C15—C14—S2119.21 (15)
C4—C5—H5A108.8C16—C15—C14119.43 (18)
C6—C5—H5B108.8C16—C15—H15120.3
C4—C5—H5B108.8C14—C15—H15120.3
H5A—C5—H5B107.6C15—C16—C17121.32 (19)
C5—C6—C7115.0 (2)C15—C16—H16119.3
C5—C6—H6A108.5C17—C16—H16119.3
C7—C6—H6A108.5C18—C17—C16118.1 (2)
C5—C6—H6B108.5C18—C17—C20121.7 (2)
C7—C6—H6B108.5C16—C17—C20120.2 (2)
H6A—C6—H6B107.5C19—C18—C17121.93 (19)
C8—C7—C6113.8 (2)C19—C18—H18119.0
C8—C7—H7A108.8C17—C18—H18119.0
C6—C7—H7A108.8C18—C19—C14118.72 (19)
C8—C7—H7B108.8C18—C19—H19120.6
C6—C7—H7B108.8C14—C19—H19120.6
H7A—C7—H7B107.7C17—C20—H20A109.5
C7—C8—C9114.1 (2)C17—C20—H20B109.5
C7—C8—H8A108.7H20A—C20—H20B109.5
C9—C8—H8A108.7C17—C20—H20C109.5
C7—C8—H8B108.7H20A—C20—H20C109.5
C9—C8—H8B108.7H20B—C20—H20C109.5
C1—N1—N2—S2−169.49 (13)C10—C11—C12—C162.7 (2)
O2—S2—N2—N1−51.04 (15)C10—C11—C12—S1−169.51 (15)
O1—S2—N2—N1−179.96 (12)C13—S1—C12—C170.58 (16)
C14—S2—N2—N165.37 (14)C13—S1—C12—C11−60.51 (17)
N2—N1—C1—C21.0 (3)O2—S2—C14—C1926.37 (19)
N2—N1—C1—C12−178.92 (15)O1—S2—C14—C19158.95 (16)
N1—C1—C2—C3−105.1 (2)N2—S2—C14—C19−89.30 (18)
C12—C1—C2—C374.8 (2)O2—S2—C14—C15−153.98 (15)
C1—C2—C3—C465.0 (2)O1—S2—C14—C15−21.41 (18)
C2—C3—C4—C5−174.27 (19)N2—S2—C14—C1590.35 (16)
C3—C4—C5—C668.5 (3)C19—C14—C15—C160.2 (3)
C4—C5—C6—C767.2 (3)S2—C14—C15—C16−179.41 (15)
C5—C6—C7—C8−144.2 (2)C14—C15—C16—C170.6 (3)
C6—C7—C8—C968.6 (3)C15—C16—C17—C18−0.5 (3)
C7—C8—C9—C1070.6 (3)C15—C16—C17—C20−178.8 (2)
C8—C9—C10—C11−176.03 (19)C16—C17—C18—C19−0.3 (3)
C9—C10—C11—C1265.8 (2)C20—C17—C18—C19177.9 (2)
N1—C1—C12—C1134.1 (2)C17—C18—C19—C141.2 (3)
C2—C1—C12—C11−145.82 (18)C15—C14—C19—C18−1.1 (3)
N1—C1—C12—S1−95.61 (17)S2—C14—C19—C18178.55 (16)
C2—C1—C12—S184.45 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.846 (15)2.786 (15)3.6223 (18)170 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2190).

References

  • Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, X. H., Yang, X. L., Ling, Y., Fan, Z. J., Wang, D. Q. & Li, Z. M. (2005). J. Argric. Food. Chem.53, 2202–2206. [PubMed]
  • Lu, H. Z., Wang, M. A. & Wang, D. Q. (2004). Chem. J. Chin. Univ.25, 120–123.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Y. N., Wang, D. Q. & Wang, M. A. (2005). Chin. J. Pestic. Sci., 7, 210–214.
  • Wang, M. A., Yan, X. J., Liu, J. P., Jin, S. H., Li, T. G., Yang, X. & Wang, D. Q. (2007). Acta Chim. Sinica, 16, 1657–1662.
  • Wang, D. Q., Yang, X. L., Wang, M. A., Liang, X. M. & You, T. B. (2002). Acta Chim. Sinica, 60, 475–480.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography