PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m538–m539.
Published online 2008 March 14. doi:  10.1107/S1600536808006715
PMCID: PMC2960982

cyclo-Tetra-μ-malato-κ16 O,O′,O′′:O′′′-tetra­kis[bis­(1H-benzimidazole-κN 3)cobalt(II)] eicosa­hydrate

Abstract

The title compound, [Co4(C4H4O5)4(C7H6N2)8]·20H2O, consists of tetra­nuclear CoII complexes and disordered uncoordinated water mol­ecules. The tetra­meric complex mol­ecule has An external file that holds a picture, illustration, etc.
Object name is e-64-0m538-efi2.jpg symmetry. While two benzimidazole mol­ecules and a tridentate malate dianion coordinate a CoII ion, the carboxylate O atom from an adjacent malate dianion bridges the CoII ions to complete a distorted octa­hedral coordination geometry. The tridentate malate dianion chelates the CoII ion, and the chelate six- and five-membered rings show half-chair and envelope configurations, respectively. A face-to-face separation of 3.494 (9) Å between parallel benzimidazole ligands indicates the existence of π–π stacking between adjacent complexes. The crystal structure also involves N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For general background, see: Deisenhofer & Michel (1989 [triangle]); Su & Xu (2004 [triangle]); Liu et al. (2004 [triangle]); Li et al. (2005 [triangle]). For related structures, see: Nie et al. (2002 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-64-0m538-scheme1.jpg

Experimental

Crystal data

  • [Co4(C4H4O5)4(C7H6N2)8]·20H2O
  • M r = 2069.43
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m538-efi3.jpg
  • a = 20.230 (2) Å
  • c = 11.6203 (12) Å
  • V = 4755.6 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 295 (2) K
  • 0.35 × 0.30 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.748, T max = 0.840
  • 29983 measured reflections
  • 4053 independent reflections
  • 3191 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.190
  • S = 1.15
  • 4053 reflections
  • 294 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006715/ng2434sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006715/ng2434Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years. A series of metal complexes with benzimidazole (bzim) ligand has been prepared and their crystal structures have been determined in our laboratory (Su & Xu, 2004; Liu et al., 2004; Li et al., 2005). As part of our ongoing investigation on the nature of π-π stacking, the title CoII complex incorporating bzim ligand has been prepared and its crystal structure is reported here.

The structure in an asymmetric unit is shown in Fig. 1, and the molecular structure of the tetrameric complex is shown in Fig. 2. The tetranuclear complex has a -4 symmetry. In the asymmetric unit the CoII ion is coordinated by two bzim ligands and a tridentate malate dianion, and the carboxyl O5 atom of malate dianion from the adjacent asymmetric unit bridges to the CoII ion to complete the distorted octahedral coordination (Table 1). The uncoordinated carboxyl O2 atom links with the bzim ligand of the adjacent complex via N—H···O hydrogen bonding (Table 2). The tridentate malate dianion chelates the CoII ion, the chelating six-membered ring and five-membered ring show half-chair and envelope configuration, respectively. Within the malate dianion the C1—C2—C3—C4 torsion angle of 58.9 (6)° is close to 53.0 (3)° found in the crystal structure of a free malic acid (Nie et al., 2002).

Partially overlapped arrangement is observed between parallel bzim ligands of adjacent complexes (Fig. 3), the face-to-face separation of 3.494 (9) Å between N23-phen and N23iv-phen ligands indicates the existence of π-π stacking [symmetry code: (iv) 1 - x,1 - y,1 - z]. Lattice water molecules are disorderly distributed in the roomy space between complexes.

Experimental

An ethanol solution (5 ml) of bzim (0.24 g, 2 mmol) was mixed with an aqueous solution (10 ml) containing cobalt(II) acetate tetrahydrate (0.24 g, 1 mmol), D,L-malic acid (0.13 g, 1 mmol) and sodium carbonate (0.10 g, 1 mmol). The mixture was refluxed for 4 h and filtered after cooling to room temperature. Single crystals of the title compound were obtained after one week from the filtrate.

Refinement

Lattice water molecules are disordered in the crystal structure. Disordered lattice water O atoms were refined isotropically with the fixed occupancies of 1/2, and H atoms of disordered water molecules were not included in the refinement. Hydroxyl H atom was located in a difference Fourier map and refined as riding in its as-found relative position with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The structure of the title compound in an asymmetric unit with 30% probability displacement (arbitrary spheres for H atoms).
Fig. 2.
The tetranuclear molecular structure of the title complex [symmetry codes: (i) 1/2 - x,3/2 - y,z; (ii) -1/2 + y,1 - x,1 - z; (iii) 1 - y,1/2 + x,1 - z].
Fig. 3.
A diagram showing π-π stacking [symmetry code: (iv) 1 - x,1 - y,1 - z].

Crystal data

[Co4(C4H4O5)4(C7H6N2)8]·20H2OZ = 2
Mr = 2069.43F000 = 2152
Tetragonal, P4/nDx = 1.445 Mg m3
Hall symbol: -P 4aMo Kα radiation λ = 0.71069 Å
a = 20.230 (2) ÅCell parameters from 8672 reflections
b = 20.230 Åθ = 2.0–24.0º
c = 11.6203 (12) ŵ = 0.78 mm1
α = 90ºT = 295 (2) K
β = 90ºPrism, pink
γ = 90º0.35 × 0.30 × 0.22 mm
V = 4755.6 (8) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer4053 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.075
Detector resolution: 10.00 pixels mm-1θmax = 25.0º
T = 295(2) Kθmin = 1.4º
ω scansh = −22→24
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −23→21
Tmin = 0.748, Tmax = 0.840l = −12→12
29983 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.076  w = 1/[σ2(Fo2) + (0.0761P)2 + 7.4753P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.43 e Å3
4053 reflectionsΔρmin = −0.31 e Å3
294 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co0.43554 (3)0.71743 (3)0.55558 (6)0.0519 (3)
N110.5316 (3)0.8011 (3)0.8403 (6)0.106 (2)
H110.56800.81340.87210.128*
N130.4649 (2)0.7567 (2)0.7126 (4)0.0602 (11)
N210.5804 (3)0.5747 (3)0.4877 (6)0.0909 (18)
H210.61140.56100.44290.109*
N230.5019 (2)0.6392 (2)0.5566 (4)0.0667 (12)
O10.50329 (18)0.7760 (2)0.4621 (4)0.0691 (11)
O20.5563 (2)0.8172 (3)0.3159 (4)0.1038 (16)
O30.39943 (17)0.69288 (15)0.3869 (3)0.0571 (9)
H3A0.36020.67030.39760.068*
O40.36459 (17)0.79509 (16)0.5193 (3)0.0556 (9)
O50.33611 (16)0.85780 (16)0.3690 (3)0.0562 (9)
C10.5066 (3)0.7899 (3)0.3585 (6)0.0628 (14)
C20.4512 (3)0.7765 (3)0.2754 (5)0.0712 (16)
H2A0.46520.74220.22250.085*
H2B0.44340.81620.23060.085*
C30.3868 (2)0.7556 (2)0.3297 (5)0.0570 (13)
H30.35410.74860.26880.068*
C40.3602 (2)0.8070 (2)0.4135 (5)0.0506 (12)
C120.5260 (3)0.7690 (4)0.7395 (7)0.093 (2)
H120.56190.75690.69410.111*
C140.3604 (3)0.7854 (3)0.8185 (5)0.0652 (15)
H140.33130.76610.76630.078*
C150.3380 (4)0.8176 (4)0.9149 (6)0.088 (2)
H150.29270.82050.92720.106*
C160.3800 (6)0.8455 (4)0.9937 (7)0.104 (2)
H160.36240.86631.05810.125*
C170.4469 (6)0.8436 (4)0.9804 (6)0.110 (3)
H170.47560.86291.03310.132*
C180.4696 (4)0.8110 (3)0.8834 (6)0.0838 (18)
C190.4273 (3)0.7829 (2)0.8026 (5)0.0584 (13)
C220.5461 (3)0.6295 (3)0.4751 (7)0.086 (2)
H220.55260.65870.41440.103*
C240.4745 (3)0.5679 (3)0.7273 (6)0.086 (2)
H240.44170.59510.75720.104*
C250.4908 (4)0.5093 (4)0.7806 (7)0.109 (3)
H250.46950.49670.84800.131*
C260.5408 (4)0.4680 (4)0.7312 (9)0.108 (3)
H260.55060.42800.76690.130*
C270.5738 (3)0.4843 (4)0.6366 (8)0.097 (2)
H270.60640.45680.60650.116*
C280.5580 (3)0.5432 (3)0.5846 (6)0.0707 (17)
C290.5082 (2)0.5850 (3)0.6283 (6)0.0637 (15)
O1WA0.6498 (6)0.7660 (6)0.5347 (11)0.111 (4)*0.50
O1WB0.6657 (13)0.7678 (12)0.450 (2)0.232 (10)*0.50
O2WA0.612 (2)0.656 (2)0.164 (4)0.382 (18)*0.50
O2WB0.724 (5)0.683 (3)0.306 (5)0.55 (4)*0.50
O3WA0.6433 (16)0.8792 (19)0.941 (3)0.294 (13)*0.50
O3WB0.656 (2)0.954 (2)1.036 (3)0.358 (17)*0.50
O4WA0.6559 (16)0.7823 (16)1.177 (3)0.306 (14)*0.50
O4WB0.6030 (17)0.8444 (17)1.094 (3)0.305 (13)*0.50
O5WA0.6861 (19)0.6634 (15)0.943 (2)0.294 (13)*0.50
O5WB0.688 (3)0.692 (3)0.719 (4)0.49 (3)*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.0465 (4)0.0514 (4)0.0579 (5)0.0028 (3)−0.0040 (3)−0.0070 (3)
N110.092 (5)0.139 (6)0.088 (5)−0.022 (4)−0.033 (4)−0.028 (4)
N130.053 (3)0.066 (3)0.061 (3)0.003 (2)−0.011 (2)−0.006 (2)
N210.065 (3)0.085 (4)0.122 (5)0.016 (3)0.020 (3)−0.020 (4)
N230.050 (3)0.068 (3)0.082 (3)0.013 (2)0.002 (2)−0.009 (3)
O10.059 (2)0.080 (3)0.068 (3)−0.0198 (18)−0.0013 (19)−0.005 (2)
O20.085 (3)0.119 (4)0.108 (4)−0.038 (3)0.019 (3)−0.004 (3)
O30.061 (2)0.0489 (19)0.061 (2)−0.0063 (15)−0.0033 (17)−0.0063 (16)
O40.060 (2)0.0530 (19)0.054 (2)0.0098 (15)−0.0076 (17)−0.0001 (16)
O50.055 (2)0.057 (2)0.056 (2)−0.0009 (15)−0.0015 (17)0.0061 (17)
C10.053 (3)0.063 (3)0.072 (4)−0.003 (2)0.006 (3)−0.017 (3)
C20.077 (4)0.074 (4)0.062 (4)−0.008 (3)0.010 (3)−0.010 (3)
C30.056 (3)0.060 (3)0.055 (3)−0.006 (2)−0.009 (2)−0.009 (3)
C40.037 (2)0.052 (3)0.063 (4)−0.005 (2)−0.007 (2)−0.003 (2)
C120.064 (4)0.122 (6)0.093 (6)0.000 (4)−0.014 (4)−0.022 (5)
C140.073 (4)0.071 (4)0.052 (4)0.014 (3)−0.004 (3)0.003 (3)
C150.104 (5)0.099 (5)0.062 (5)0.024 (4)0.007 (4)0.011 (4)
C160.154 (8)0.108 (6)0.050 (4)0.008 (5)0.006 (5)−0.008 (4)
C170.158 (8)0.116 (6)0.056 (5)−0.033 (6)−0.008 (5)−0.023 (4)
C180.091 (5)0.090 (5)0.071 (5)−0.014 (4)−0.011 (4)−0.006 (4)
C190.076 (4)0.052 (3)0.047 (3)0.002 (2)−0.012 (3)0.004 (2)
C220.073 (4)0.079 (4)0.105 (6)0.011 (3)0.022 (4)−0.011 (4)
C240.075 (4)0.095 (5)0.089 (5)0.030 (3)−0.007 (4)0.008 (4)
C250.102 (6)0.114 (6)0.111 (6)0.034 (5)−0.001 (5)0.030 (5)
C260.093 (6)0.092 (5)0.140 (8)0.028 (4)−0.024 (5)0.027 (5)
C270.064 (4)0.081 (5)0.144 (8)0.020 (3)−0.020 (5)−0.019 (5)
C280.056 (3)0.059 (3)0.098 (5)0.016 (3)−0.016 (3)−0.017 (3)
C290.046 (3)0.073 (4)0.072 (4)0.011 (2)−0.012 (3)−0.013 (3)

Geometric parameters (Å, °)

Co—N132.078 (4)C2—H2B0.9700
Co—N232.075 (4)C3—C41.523 (7)
Co—O12.112 (4)C3—H30.9800
Co—O32.150 (4)C12—H120.9300
Co—O42.169 (3)C14—C191.367 (8)
Co—O5i2.101 (4)C14—C151.373 (8)
N11—C121.344 (9)C14—H140.9300
N11—C181.366 (9)C15—C161.371 (11)
N11—H110.8600C15—H150.9300
N13—C121.298 (7)C16—C171.363 (12)
N13—C191.396 (7)C16—H160.9300
N21—C221.316 (8)C17—C181.382 (11)
N21—C281.370 (9)C17—H170.9300
N21—H210.8600C18—C191.392 (8)
N23—C221.318 (8)C22—H220.9300
N23—C291.382 (7)C24—C251.377 (9)
O1—C11.239 (7)C24—C291.382 (9)
O2—C11.250 (7)C24—H240.9300
O3—C31.454 (6)C25—C261.432 (11)
O3—H3A0.9247C25—H250.9300
O4—C41.256 (6)C26—C271.328 (11)
O5—C41.250 (6)C26—H260.9300
C1—C21.504 (8)C27—C281.375 (10)
C2—C31.507 (7)C27—H270.9300
C2—H2A0.9700C28—C291.409 (7)
N23—Co—N1395.85 (18)C4—C3—H3108.8
N23—Co—O5i95.05 (16)O5—C4—O4126.1 (5)
N13—Co—O5i92.60 (16)O5—C4—C3115.8 (5)
N23—Co—O190.65 (18)O4—C4—C3118.1 (4)
N13—Co—O192.93 (17)N13—C12—N11112.5 (6)
O5i—Co—O1171.61 (15)N13—C12—H12123.8
N23—Co—O392.79 (16)N11—C12—H12123.8
N13—Co—O3170.57 (15)C19—C14—C15117.0 (6)
O5i—Co—O390.39 (13)C19—C14—H14121.5
O1—Co—O383.18 (14)C15—C14—H14121.5
N23—Co—O4168.94 (18)C16—C15—C14122.4 (7)
N13—Co—O494.74 (15)C16—C15—H15118.8
O5i—Co—O487.65 (13)C14—C15—H15118.8
O1—Co—O485.61 (15)C17—C16—C15121.9 (8)
O3—Co—O476.44 (13)C17—C16—H16119.0
C12—N11—C18108.2 (6)C15—C16—H16119.0
C12—N11—H11125.9C16—C17—C18115.8 (7)
C18—N11—H11125.9C16—C17—H17122.1
C12—N13—C19105.4 (5)C18—C17—H17122.1
C12—N13—Co123.8 (5)N11—C18—C17132.3 (7)
C19—N13—Co130.3 (3)N11—C18—C19104.8 (6)
C22—N21—C28107.9 (5)C17—C18—C19122.8 (7)
C22—N21—H21126.1C14—C19—C18120.1 (6)
C28—N21—H21126.1C14—C19—N13130.9 (5)
C22—N23—C29104.6 (5)C18—C19—N13109.0 (5)
C22—N23—Co123.3 (5)N21—C22—N23113.8 (7)
C29—N23—Co132.0 (4)N21—C22—H22123.1
C1—O1—Co131.5 (3)N23—C22—H22123.1
C3—O3—Co105.9 (3)C25—C24—C29118.1 (6)
C3—O3—H3A110.0C25—C24—H24120.9
Co—O3—H3A106.4C29—C24—H24120.9
C4—O4—Co112.0 (3)C24—C25—C26119.5 (8)
C4—O5—Coii130.1 (3)C24—C25—H25120.3
O1—C1—O2121.9 (6)C26—C25—H25120.3
O1—C1—C2122.9 (5)C27—C26—C25122.8 (7)
O2—C1—C2115.2 (6)C27—C26—H26118.6
C1—C2—C3115.2 (5)C25—C26—H26118.6
C1—C2—H2A108.5C26—C27—C28117.6 (7)
C3—C2—H2A108.5C26—C27—H27121.2
C1—C2—H2B108.5C28—C27—H27121.2
C3—C2—H2B108.5N21—C28—C27133.4 (6)
H2A—C2—H2B107.5N21—C28—C29104.8 (5)
O3—C3—C2106.6 (4)C27—C28—C29121.9 (7)
O3—C3—C4111.5 (4)C24—C29—N23130.9 (5)
C2—C3—C4112.4 (4)C24—C29—C28120.2 (6)
O3—C3—H3108.8N23—C29—C28108.9 (6)
C2—C3—H3108.8
N23—Co—N13—C1250.3 (6)C2—C3—C4—O573.8 (6)
O5i—Co—N13—C12145.7 (5)O3—C3—C4—O413.6 (6)
O1—Co—N13—C12−40.6 (5)C2—C3—C4—O4−105.9 (5)
O4—Co—N13—C12−126.5 (5)C19—N13—C12—N110.1 (8)
N23—Co—N13—C19−138.7 (5)Co—N13—C12—N11172.9 (5)
O5i—Co—N13—C19−43.4 (5)C18—N11—C12—N13−0.1 (9)
O1—Co—N13—C19130.3 (5)C19—C14—C15—C16−0.9 (10)
O4—Co—N13—C1944.5 (5)C14—C15—C16—C170.7 (12)
N13—Co—N23—C22−121.7 (5)C15—C16—C17—C18−0.8 (13)
O5i—Co—N23—C22145.1 (5)C12—N11—C18—C17−176.7 (8)
O1—Co—N23—C22−28.7 (5)C12—N11—C18—C190.1 (8)
O3—Co—N23—C2254.5 (5)C16—C17—C18—N11177.6 (8)
O4—Co—N23—C2241.4 (11)C16—C17—C18—C191.2 (12)
N13—Co—N23—C2964.3 (5)C15—C14—C19—C181.3 (8)
O5i—Co—N23—C29−28.9 (5)C15—C14—C19—N13−177.0 (6)
O1—Co—N23—C29157.3 (5)N11—C18—C19—C14−178.7 (5)
O3—Co—N23—C29−119.5 (5)C17—C18—C19—C14−1.5 (10)
O4—Co—N23—C29−132.6 (8)N11—C18—C19—N130.0 (7)
N23—Co—O1—C1100.5 (5)C17—C18—C19—N13177.2 (7)
N13—Co—O1—C1−163.6 (5)C12—N13—C19—C14178.5 (6)
O3—Co—O1—C17.7 (5)Co—N13—C19—C146.3 (9)
O4—Co—O1—C1−69.1 (5)C12—N13—C19—C180.0 (7)
N23—Co—O3—C3−143.1 (3)Co—N13—C19—C18−172.2 (4)
O5i—Co—O3—C3121.8 (3)C28—N21—C22—N230.6 (8)
O1—Co—O3—C3−52.8 (3)C29—N23—C22—N21−0.2 (8)
O4—Co—O3—C334.3 (3)Co—N23—C22—N21−175.6 (4)
N23—Co—O4—C4−16.0 (10)C29—C24—C25—C26−1.1 (11)
N13—Co—O4—C4147.1 (3)C24—C25—C26—C271.6 (13)
O5i—Co—O4—C4−120.5 (3)C25—C26—C27—C28−0.7 (12)
O1—Co—O4—C454.5 (3)C22—N21—C28—C27177.6 (7)
O3—Co—O4—C4−29.5 (3)C22—N21—C28—C29−0.8 (7)
Co—O1—C1—O2−168.7 (4)C26—C27—C28—N21−178.9 (7)
Co—O1—C1—C212.5 (8)C26—C27—C28—C29−0.7 (10)
O1—C1—C2—C39.8 (8)C25—C24—C29—N23178.7 (6)
O2—C1—C2—C3−169.0 (5)C25—C24—C29—C28−0.2 (10)
Co—O3—C3—C286.6 (4)C22—N23—C29—C24−179.3 (7)
Co—O3—C3—C4−36.3 (4)Co—N23—C29—C24−4.5 (9)
C1—C2—C3—O3−63.4 (6)C22—N23—C29—C28−0.3 (6)
C1—C2—C3—C458.9 (6)Co—N23—C29—C28174.5 (4)
Coii—O5—C4—O4−9.6 (7)N21—C28—C29—C24179.8 (6)
Coii—O5—C4—C3170.8 (3)C27—C28—C29—C241.2 (9)
Co—O4—C4—O5−162.3 (4)N21—C28—C29—N230.7 (6)
Co—O4—C4—C317.4 (5)C27—C28—C29—N23−178.0 (6)
O3—C3—C4—O5−166.7 (4)

Symmetry codes: (i) y−1/2, −x+1, −z+1; (ii) −y+1, x+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11···O3WA0.862.183.00 (4)159
N11—H11···O5WAiii0.862.102.93 (4)163
N21—H21···O1iv0.862.573.258 (7)138
N21—H21···O2iv0.862.072.901 (8)163
O3—H3A···O4i0.921.782.645 (5)155

Symmetry codes: (iii) y, −x+3/2, z; (iv) −y+3/2, x, z; (i) y−1/2, −x+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2434).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Deisenhofer, J. & Michel, H. (1989). EMBO, 8, 2149–2170. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761–m763.
  • Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185. [PubMed]
  • Nie, J.-J., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Chin. J. Chem. 20, 395–398.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography