PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m574.
Published online 2008 March 29. doi:  10.1107/S1600536808007472
PMCID: PMC2960978

Bis(tetra­phenyl­phospho­nium) tetra­sulfido­tungstate(VI)

Abstract

The crystal structure of the title compound, (C24H20P)2[WS4], which was prepared under hydro­thermal conditions, contains tetra­phenyl­phospho­nium cations linked by supra­molecular inter­actions into chains running along the [110] and [An external file that holds a picture, illustration, etc.
Object name is e-64-0m574-efi1.jpg10] directions. The [WS4]2−anions, which lie on twofold axes, are located in the cavities created between the cation chains.

Related literature

Isostructural compounds include [Ph4P]2[MoSe4] and [Ph4P]2[WSe4] (O’Neal & Kolis, 1988 [triangle]), [Ph4P]2[NiCl4] (Ruhlandt-Senge & Müller, 1990 [triangle]), and [Ph4P]2[CdBr4] and [Ph4P]2[HgBr4] (Hasselgren et al., 1997 [triangle]). The related compounds [NH4]2[WS4] and [Ph4P][W(HS)S3] were reported by Sasvári (1963 [triangle]) and Parvez et al. (1997 [triangle]), respectively. For a review on thio­metalates, see Müller et al. (1981 [triangle]). Supra­molecular inter­actions between tetra­phenyl­phospho­nium cations have been discussed by Dance & Scudder (1995 [triangle], 1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m574-scheme1.jpg

Experimental

Crystal data

  • (C24H20P)2[WS4]
  • M r = 990.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m574-efi2.jpg
  • a = 11.1069 (4) Å
  • b = 19.4557 (6) Å
  • c = 20.2373 (6) Å
  • β = 91.242 (2)°
  • V = 4372.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.94 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Bruker–Nonius APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.351, T max = 0.414
  • 26702 measured reflections
  • 6646 independent reflections
  • 4008 reflections with I > 3σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.031
  • S = 1.11
  • 4008 reflections
  • 249 parameters
  • H-atom parameters constrained
  • Δρmax = 1.47 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: ATOMS (Dowty, 2000 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007472/cs2070sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007472/cs2070Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank ScotCHEM for a studentship for PLB and the UK EPSRC for an Advanced Research Fellowship for PV.

supplementary crystallographic information

Comment

The ability of tetrathiometallates to act as multidentate ligands has resulted in a rich coordination chemistry, which includes both discrete multimetal clusters such as [A(MS4)2]2- (A = Fe, Co, Ni, Pd, Pt, Zn, Cd; M = Mo, W) and extended structures such as NH4Cu[WS4] (Müller et al., 1981). The compound reported here is the result of our ongoing research efforts on the synthesis of novel transition metal thiometallates.

The title compound, which was prepared under hydrothermal conditions, contains discrete WS42- anions and tetraphenylphosphonium [Ph4P]+ cations. The local coordination and the atom-labelling scheme are shown in Figure 1. Each tungsten atom is surrounded by four sulfur atoms in a tetrahedral coordination. The S—W—S bond angles range from 108.59 (4) to 110.82 (7) whilst the four W—S distances are nearly identical ranging from 2.1915 (9) to 2.1962 (10) Å, and are similar to those found in [NH4]2[WS4] (Sasvári, 1963).

The [Ph4P]+ cations are arranged into zigzag chains (Figure 2) in which each phenyl group points towards another phenyl group in a neighbouring cation, with the H atoms of a given ring oriented towards the π electron density of the second phenyl ring. It has been proposed that attractive interactions between the phenyl groups of [Ph4P]+cations play a major role in the crystal packing of compounds of this type (Dance & Scudder, 1995). In particular, the so-called sextuple phenyl embrace, in which three phenyl groups of a [Ph4P]+ cation face three phenyl groups of an adjacent [Ph4P]+ cation in an edge-to-face conformation, is a frequently observed supramolecular motif (Dance & Scudder, 1996). As illustrated by Figure 2, the zigzag chains of [Ph4P]+cations found in the title compound could be described by considering each [Ph4P]+cation to interact with its two neighbours through sextuple phenyl embraces. The P···P distances within the chain are ca 6.5 Å, comparable to those observed in compounds containing this type of chain (Dance & Scudder, 1996). The structure of the title compound contains zigzag [Ph4P]+ chains running along the [110] and [110] directions (Figure 3). There are relatively short P···P distances, of ca 7.3 Å, between [Ph4P]+cations from different chains, which involve two face-to-face phenyl interactions, suggesting that there may be additional interchain supramolecular interactions. This type of interaction has been reported previously (Dance & Scudder,1996), and has been termed quadruple phenyl embrace. The tetrathiotungstate anions are located in the cavities created between the cation chains (Figure 3). A number [Ph4P]+ salts, containing chemically diverse tetrahedral anions, adopt a similar crystal structure. Isostructural compounds that have been reported include selenometallates such as [Ph4P]2[MoSe4] (O'Neal & Kolis, 1988) and [Ph4P]2[WSe4] (O'Neal & Kolis, 1988), and halometalates like [Ph4P]2[NiCl4] (Ruhlandt-Senge & Müller, 1990), [Ph4P]2[CdBr4] and [Ph4P]2[HgBr4] (Hasselgren et al., 1997).

Experimental

A mixture of [NH4]2[WS4] (0.348 g; 1 mmol) and [Ph4P]Br (0.21 g; 0.5 mmol) was loaded into a 23 ml Teflon-lined stainless autoclave, 2 ml of deionized water and 2 ml of ethylenediamine were added to the mixture. After stirring the mixture, the container was closed, heated at 443 K for 4 days, and cooled to room temperature at a cooling rate of 1 K min-1. The product was filtered, washed with deionized water, methanol and acetone and dried in air at room temperature. The product consists of large number of yellow crystals of the title compound (approximately 80% yield).

Refinement

The H atoms were positioned geometrically, with Uiso(H) = 1.2Ueq(carbon).

Figures

Fig. 1.
Local coordination diagram for [Ph4P]2[WS4] showing the atom labelling scheme and displacement ellipsoids at 50% probability for non-H atoms. H atoms are shown as circles of arbitrary radii. [Symmetry code: (i) -x, y, 3/2 - z]
Fig. 2.
Zigzag chain of [Ph4P]+cations, running along the b axis, illustrating the supramolecular edge-to-face phenyl interactions. Short P···P distances (ca 6.5 Å) are shown as red lines.
Fig. 3.
View of the [Ph4P]2[WS4] structure along the [110] direction. The relatively short P···.P distances within the zigzag chains are shown as red lines. H atoms have been omitted for clarity.

Crystal data

(C24H20P)2[WS4]F000 = 1984
Mr = 990.86Dx = 1.505 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 11.1069 (4) ÅCell parameters from 6646 reflections
b = 19.4557 (6) Åθ = 2.0–30.5º
c = 20.2373 (6) ŵ = 2.94 mm1
β = 91.242 (2)ºT = 293 K
V = 4372.1 (2) Å3Block, yellow
Z = 40.40 × 0.30 × 0.30 mm

Data collection

Bruker–Nonius APEXII CCD area-detector diffractometer4008 reflections with I > 3σ(I)
Monochromator: graphiteRint = 0.044
T = 293 Kθmax = 30.5º
ω/2θ scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.351, Tmax = 0.414k = −27→26
26702 measured reflectionsl = −28→28
6646 independent reflections

Refinement

Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027  Method, part 1, Chebychev polynomial, [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 2.09 -0.539 1.80
wR(F2) = 0.031(Δ/σ)max = 0.003
S = 1.11Δρmax = 1.47 e Å3
4008 reflectionsΔρmin = −0.63 e Å3
249 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W10.00000.543792 (10)0.75000.0336
S20.10243 (10)0.60787 (6)0.82067 (6)0.0600
S30.12468 (8)0.47920 (5)0.69500 (5)0.0484
P40.40710 (8)0.63367 (4)0.57674 (4)0.0388
C50.3781 (3)0.70067 (18)0.63526 (17)0.0437
C60.3089 (5)0.6844 (2)0.6898 (2)0.0563
C70.2841 (6)0.7352 (3)0.7362 (2)0.0707
C80.3290 (5)0.8004 (2)0.7288 (2)0.0686
C90.3984 (5)0.8169 (2)0.6756 (3)0.0689
C100.4229 (4)0.7669 (2)0.6283 (2)0.0573
C110.5148 (4)0.66260 (19)0.5171 (2)0.0487
C120.4796 (5)0.7113 (2)0.4705 (2)0.0628
C130.5591 (6)0.7353 (3)0.4247 (3)0.0736
C140.6755 (6)0.7104 (3)0.4251 (2)0.0784
C150.7125 (4)0.6610 (3)0.4694 (3)0.0736
C160.6318 (4)0.6367 (3)0.5169 (2)0.0587
C170.4672 (3)0.56172 (17)0.62141 (17)0.0385
C180.5678 (4)0.5713 (2)0.6630 (2)0.0510
C190.6220 (4)0.5167 (3)0.6945 (2)0.0565
C200.5746 (4)0.4515 (3)0.68513 (19)0.0595
C210.4726 (4)0.44106 (19)0.6465 (2)0.0550
C220.4181 (3)0.49626 (19)0.61360 (18)0.0445
C230.2728 (3)0.60850 (18)0.53184 (17)0.0396
C240.2857 (4)0.5749 (2)0.4718 (2)0.0528
C250.1833 (4)0.5528 (2)0.43687 (19)0.0583
C260.0705 (4)0.5641 (2)0.4617 (2)0.0538
C270.0588 (4)0.5965 (2)0.5217 (2)0.0542
C280.1588 (3)0.6183 (2)0.55694 (18)0.0471
H610.27730.63680.69570.0679*
H710.23370.72410.77500.0853*
H810.31080.83630.76240.0823*
H910.43120.86440.67080.0827*
H1010.47250.77880.58930.0687*
H1210.39550.72940.47020.0758*
H1310.53290.77060.39150.0887*
H1410.73380.72870.39260.0950*
H1510.79610.64230.46810.0883*
H1610.65830.60140.55000.0706*
H1810.60070.61860.67000.0612*
H1910.69460.52370.72370.0677*
H2010.61520.41140.70680.0719*
H2110.43760.39400.64210.0663*
H2210.34500.48890.58480.0533*
H2410.36750.56660.45380.0636*
H2510.19180.52870.39360.0699*
H261−0.00270.54890.43620.0647*
H271−0.02310.60430.53980.0652*
H2810.14940.64120.60070.0565*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.03259 (9)0.03114 (9)0.03738 (10)0.00000.00442 (6)0.0000
S20.0597 (6)0.0606 (6)0.0602 (6)−0.0175 (5)0.0126 (5)−0.0253 (5)
S30.0416 (4)0.0516 (5)0.0522 (5)0.0069 (3)0.0016 (4)−0.0151 (4)
P40.0428 (4)0.0362 (4)0.0375 (4)−0.0004 (3)0.0005 (3)0.0010 (3)
C50.0527 (19)0.0390 (17)0.0391 (17)−0.0021 (14)−0.0030 (14)−0.0012 (13)
C60.080 (3)0.0410 (19)0.048 (2)−0.0067 (18)0.0104 (19)−0.0017 (16)
C70.106 (4)0.059 (3)0.047 (2)−0.010 (3)0.015 (2)−0.0086 (19)
C80.104 (4)0.048 (2)0.054 (2)0.010 (2)−0.006 (2)−0.0130 (19)
C90.097 (4)0.039 (2)0.070 (3)−0.008 (2)−0.011 (3)−0.0022 (19)
C100.073 (3)0.043 (2)0.056 (2)−0.0090 (18)0.0019 (19)−0.0008 (17)
C110.056 (2)0.0402 (17)0.050 (2)−0.0044 (15)0.0076 (16)−0.0003 (15)
C120.082 (3)0.049 (2)0.058 (2)0.004 (2)0.016 (2)0.0115 (19)
C130.107 (4)0.051 (2)0.064 (3)−0.009 (3)0.021 (3)0.009 (2)
C140.094 (4)0.086 (4)0.057 (3)−0.044 (3)0.024 (3)−0.005 (3)
C150.051 (2)0.100 (4)0.070 (3)−0.016 (2)0.011 (2)−0.004 (3)
C160.052 (2)0.069 (3)0.055 (2)−0.0096 (19)0.0031 (18)0.000 (2)
C170.0371 (15)0.0405 (17)0.0380 (15)−0.0014 (12)0.0021 (12)0.0007 (12)
C180.0441 (18)0.063 (2)0.0460 (19)−0.0070 (17)−0.0037 (15)0.0060 (17)
C190.0375 (17)0.086 (3)0.046 (2)0.0089 (18)−0.0010 (15)0.0100 (19)
C200.064 (2)0.070 (3)0.0445 (18)0.030 (2)0.0064 (16)0.014 (2)
C210.073 (3)0.041 (2)0.051 (2)0.0101 (17)0.0088 (18)−0.0020 (15)
C220.0474 (18)0.0428 (18)0.0432 (18)0.0004 (14)−0.0007 (14)0.0007 (14)
C230.0432 (17)0.0389 (16)0.0367 (16)0.0049 (13)−0.0013 (13)0.0034 (13)
C240.0441 (19)0.067 (2)0.048 (2)0.0043 (17)0.0033 (15)−0.0106 (18)
C250.065 (2)0.068 (3)0.0409 (18)−0.002 (2)−0.0046 (16)−0.0115 (18)
C260.057 (2)0.061 (2)0.0439 (19)−0.0073 (17)−0.0063 (16)0.0061 (16)
C270.0419 (18)0.067 (2)0.054 (2)−0.0001 (17)0.0058 (16)0.0019 (18)
C280.0487 (19)0.054 (2)0.0388 (17)0.0032 (16)0.0029 (14)−0.0019 (15)

Geometric parameters (Å, °)

W1—S2i2.1962 (10)C14—H1410.999
W1—S3i2.1915 (9)C15—C161.409 (6)
W1—S22.1962 (10)C15—H1510.998
W1—S32.1915 (9)C16—H1610.999
P4—C51.795 (4)C17—C181.396 (5)
P4—C111.807 (4)C17—C221.393 (5)
P4—C171.788 (3)C18—C191.371 (6)
P4—C231.797 (4)C18—H1810.999
C5—C61.395 (5)C19—C201.384 (7)
C5—C101.390 (5)C19—H1910.999
C6—C71.394 (6)C20—C211.378 (7)
C6—H610.998C20—H2010.998
C7—C81.374 (7)C21—C221.395 (6)
C7—H710.997C21—H2110.999
C8—C91.376 (8)C22—H2210.999
C8—H810.998C23—C241.390 (5)
C9—C101.394 (7)C23—C281.388 (5)
C9—H910.999C24—C251.393 (6)
C10—H1010.999C24—H2410.999
C11—C121.388 (6)C25—C261.378 (6)
C11—C161.394 (6)C25—H2511.000
C12—C131.375 (7)C26—C271.377 (6)
C12—H1210.999C26—H2610.998
C13—C141.380 (9)C27—C281.374 (6)
C13—H1310.999C27—H2710.999
C14—C151.371 (9)C28—H2810.999
S2i—W1—S3i109.40 (4)C14—C15—C16119.6 (5)
S2i—W1—S2110.82 (7)C14—C15—H151120.2
S3i—W1—S2108.59 (4)C16—C15—H151120.2
S2i—W1—S3108.59 (4)C15—C16—C11119.2 (4)
S3i—W1—S3110.02 (6)C15—C16—H161120.4
S2—W1—S3109.40 (4)C11—C16—H161120.4
C5—P4—C11110.19 (17)P4—C17—C18119.1 (3)
C5—P4—C17107.77 (16)P4—C17—C22121.2 (3)
C11—P4—C17109.65 (17)C18—C17—C22119.7 (3)
C5—P4—C23111.88 (17)C17—C18—C19121.0 (4)
C11—P4—C23107.53 (18)C17—C18—H181119.6
C17—P4—C23109.81 (16)C19—C18—H181119.5
P4—C5—C6117.8 (3)C18—C19—C20119.0 (4)
P4—C5—C10122.5 (3)C18—C19—H191120.6
C6—C5—C10119.7 (4)C20—C19—H191120.4
C5—C6—C7119.5 (4)C19—C20—C21121.2 (4)
C5—C6—H61120.3C19—C20—H201119.3
C7—C6—H61120.2C21—C20—H201119.5
C6—C7—C8120.2 (4)C20—C21—C22120.0 (4)
C6—C7—H71120.0C20—C21—H211120.0
C8—C7—H71119.8C22—C21—H211120.0
C7—C8—C9120.8 (4)C21—C22—C17119.0 (4)
C7—C8—H81119.6C21—C22—H221120.4
C9—C8—H81119.7C17—C22—H221120.6
C8—C9—C10119.7 (4)P4—C23—C24118.0 (3)
C8—C9—H91120.1P4—C23—C28122.1 (3)
C10—C9—H91120.2C24—C23—C28119.8 (3)
C9—C10—C5120.1 (4)C23—C24—C25119.3 (4)
C9—C10—H101119.9C23—C24—H241120.3
C5—C10—H101120.0C25—C24—H241120.3
P4—C11—C12119.1 (3)C24—C25—C26120.3 (4)
P4—C11—C16121.3 (3)C24—C25—H251119.8
C12—C11—C16119.5 (4)C26—C25—H251119.9
C11—C12—C13121.0 (5)C25—C26—C27119.9 (4)
C11—C12—H121119.6C25—C26—H261120.0
C13—C12—H121119.5C27—C26—H261120.0
C12—C13—C14119.4 (5)C26—C27—C28120.5 (4)
C12—C13—H131120.3C26—C27—H271119.7
C14—C13—H131120.3C28—C27—H271119.8
C13—C14—C15121.2 (4)C23—C28—C27120.1 (3)
C13—C14—H141119.4C23—C28—H281120.0
C15—C14—H141119.4C27—C28—H281119.9

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2070).

References

  • Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Bruker (2005). APEX2 Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dance, I. G. & Scudder, M. L. (1995). J. Chem. Soc. Chem. Commun. pp. 1039–1040.
  • Dance, I. G. & Scudder, M. L. (1996). J. Chem. Soc. Dalton Trans. pp. 3755–3769.
  • Dowty, E. (2000). ATOMS Version 6.1. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.
  • Hasselgren, D., Dean, P. A. W., Scudder, M. L., Craig, D. C. & Dance, I. G. (1997). J. Chem. Soc. Dalton Trans. pp. 2019–2027.
  • Müller, A., Diemann, E., Jostes, R. & Bögge, H. (1981). Angew. Chem. Int. Ed. Engl.20, 934–955.
  • O’Neal, S. C. & Kolis, J. W. (1988). J. Am. Chem. Soc.110, 1971–1973.
  • Parvez, M., Boorman, P. M. & Wang, M. (1997). Acta Cryst. C53, 413–414.
  • Ruhlandt-Senge, K. & Müller, U. (1990). Z. Naturforsch. Teil B, 45, 995–999.
  • Sasvári, K. (1963). Acta Cryst.16, 719–724.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography