PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o742.
Published online 2008 March 29. doi:  10.1107/S1600536808005576
PMCID: PMC2960971

Methyl 4-(butyrylamino)-5-methyl-2-nitro­benzoate

Abstract

The title compound, C13H16N2O5, is useful as an inter­mediate in the field of agrochemicals. Intra­molecular C—H(...)O hydrogen bonds result in the formation of one six- and one five-membered nearly planar ring; the six-membered ring is also nearly coplanar with the adjacent benzene ring. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Ries et al. (1993 [triangle]); Engeli et al. (2000 [triangle]); Kintscher et al. (2004 [triangle]); Goossens et al. (2003 [triangle]); Boustany et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o742-scheme1.jpg

Experimental

Crystal data

  • C13H16N2O5
  • M r = 280.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o742-efi1.jpg
  • a = 7.6370 (15) Å
  • b = 8.7880 (18) Å
  • c = 11.329 (2) Å
  • α = 81.06 (3)°
  • β = 78.48 (3)°
  • γ = 68.39 (3)°
  • V = 689.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.959, T max = 0.980
  • 2919 measured reflections
  • 2704 independent reflections
  • 1650 reflections with I > 2σ(I)
  • R int = 0.032
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.161
  • S = 1.01
  • 2704 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005576/hk2408sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005576/hk2408Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), is useful as an intermediate and agrochemicals. It is important as an intermediate for the preparation of telmisartan (Ries et al., 1993), that can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Boustany et al., 2004). As part of our ongoing studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bonds (Table 1) result in the formations of one six- and one five-membered nearly planar rings; B (N1/O1/C4—C6/H6A) and C (O4/C8/C9/C12/H9A). Ring A (C5—C10) is, of course, planar and the dihedral angles between them are A/B = 2.01 (3)°, A/C = 6.76 (3)° and B/C = 8.73 (2)°. So, rings A and B are also nearly co-planar.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, methyl 4-amino-3-methylbenzoate (8.25 g, 50 mmol) was acylated with butyryl chloride (50 mmol, 5.3 ml) in chlorobenzene at 373 K. The resulting amide was reacted with fuming nitric acid in sulfuric acid (60%) at 273 K. The reaction mixture was poured into ice-water. The residue was filtered and recrystallized from methylene chloride to give the title compound, (I), (yield; 10.8 g, 77%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methine and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C13H16N2O5Z = 2
Mr = 280.28F000 = 296
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.6370 (15) ÅCell parameters from 25 reflections
b = 8.7880 (18) Åθ = 9–14º
c = 11.329 (2) ŵ = 0.11 mm1
α = 81.06 (3)ºT = 294 (2) K
β = 78.48 (3)ºBlock, colorless
γ = 68.39 (3)º0.30 × 0.20 × 0.10 mm
V = 689.9 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.032
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 1.8º
T = 294(2) Kh = −9→9
ω/2θ scansk = −10→10
Absorption correction: ψ scan(North et al., 1968)l = 0→13
Tmin = 0.959, Tmax = 0.9803 standard reflections
2919 measured reflections every 120 min
2704 independent reflections intensity decay: none
1650 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.161  w = 1/[σ2(Fo2) + (0.06P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2704 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2769 (4)−0.1219 (3)−0.0125 (2)0.0492 (6)
H1A0.3013−0.22420.01190.059*
O10.2083 (4)0.0590 (3)−0.1748 (2)0.0845 (9)
C10.2766 (5)−0.3253 (4)−0.3938 (3)0.0681 (10)
H1B0.2607−0.2909−0.47690.102*
H1C0.1823−0.3727−0.35510.102*
H1D0.4016−0.4056−0.39010.102*
N20.1750 (4)0.4161 (3)0.1056 (2)0.0454 (6)
O20.0124 (3)0.5069 (2)0.1365 (2)0.0693 (7)
C20.2531 (5)−0.1773 (4)−0.3296 (3)0.0520 (8)
H2A0.3459−0.1278−0.37060.062*
H2B0.1270−0.0962−0.33410.062*
O30.3005 (3)0.4618 (3)0.0453 (2)0.0634 (7)
C30.2792 (4)−0.2244 (3)−0.1980 (2)0.0454 (7)
H3A0.1893−0.2776−0.15820.054*
H3B0.4066−0.3034−0.19410.054*
O40.2265 (3)0.1922 (2)0.46212 (17)0.0595 (6)
C40.2510 (4)−0.0805 (3)−0.1302 (2)0.0445 (7)
O50.2355 (3)0.4105 (2)0.33631 (17)0.0585 (6)
C50.2695 (4)−0.0219 (3)0.0744 (2)0.0397 (6)
C60.2311 (4)0.1466 (3)0.0483 (2)0.0383 (6)
H6A0.21220.1962−0.02910.046*
C70.2217 (4)0.2382 (3)0.1391 (2)0.0356 (6)
C80.2483 (4)0.1712 (3)0.2565 (2)0.0394 (6)
C90.2896 (4)0.0022 (3)0.2777 (2)0.0461 (7)
H9A0.3106−0.04740.35480.055*
C100.3010 (4)−0.0948 (3)0.1907 (2)0.0456 (7)
C110.3466 (7)−0.2777 (4)0.2205 (3)0.0822 (13)
H11A0.3653−0.30650.30350.123*
H11B0.4607−0.33580.16910.123*
H11C0.2428−0.30690.20790.123*
C120.2353 (4)0.2736 (3)0.3534 (2)0.0402 (6)
C130.2136 (6)0.2797 (4)0.5634 (3)0.0723 (11)
H13A0.20950.20930.63700.108*
H13B0.09990.37540.56740.108*
H13C0.32300.31250.55310.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0804 (19)0.0346 (12)0.0354 (12)−0.0212 (12)−0.0131 (12)−0.0035 (9)
O10.165 (3)0.0436 (13)0.0494 (13)−0.0360 (15)−0.0326 (15)0.0018 (10)
C10.090 (3)0.072 (2)0.0495 (19)−0.032 (2)−0.0078 (18)−0.0197 (16)
N20.0652 (17)0.0380 (13)0.0380 (13)−0.0210 (13)−0.0154 (12)−0.0009 (10)
O20.0695 (16)0.0383 (12)0.0819 (17)0.0019 (11)−0.0134 (13)−0.0029 (11)
C20.059 (2)0.0473 (16)0.0487 (17)−0.0144 (14)−0.0101 (15)−0.0114 (13)
O30.0922 (18)0.0483 (12)0.0568 (13)−0.0405 (12)−0.0019 (12)0.0022 (10)
C30.0543 (18)0.0422 (15)0.0443 (16)−0.0216 (13)−0.0042 (13)−0.0099 (12)
O40.1073 (18)0.0430 (11)0.0345 (11)−0.0323 (11)−0.0149 (11)−0.0013 (9)
C40.0537 (18)0.0375 (15)0.0423 (16)−0.0169 (13)−0.0060 (13)−0.0029 (12)
O50.1011 (18)0.0393 (11)0.0447 (12)−0.0343 (11)−0.0136 (11)−0.0036 (9)
C50.0521 (17)0.0328 (13)0.0365 (14)−0.0161 (12)−0.0063 (12)−0.0072 (11)
C60.0496 (17)0.0333 (13)0.0312 (13)−0.0133 (12)−0.0063 (12)−0.0035 (10)
C70.0435 (16)0.0272 (12)0.0377 (14)−0.0140 (11)−0.0081 (12)−0.0007 (10)
C80.0469 (17)0.0336 (13)0.0402 (15)−0.0168 (12)−0.0065 (12)−0.0036 (11)
C90.071 (2)0.0356 (14)0.0319 (14)−0.0193 (14)−0.0096 (13)0.0002 (11)
C100.070 (2)0.0306 (13)0.0362 (14)−0.0193 (13)−0.0060 (13)−0.0003 (11)
C110.164 (4)0.0358 (16)0.0499 (19)−0.035 (2)−0.026 (2)0.0017 (14)
C120.0459 (17)0.0356 (14)0.0384 (15)−0.0138 (12)−0.0063 (12)−0.0028 (11)
C130.129 (3)0.0519 (19)0.0386 (18)−0.032 (2)−0.0169 (19)−0.0070 (14)

Geometric parameters (Å, °)

N1—C41.361 (3)O4—C131.446 (3)
N1—C51.398 (3)O5—C121.190 (3)
N1—H1A0.8600C5—C61.394 (3)
O1—C41.202 (3)C5—C101.399 (4)
C1—C21.524 (4)C6—C71.377 (3)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—C81.391 (3)
C1—H1D0.9600C8—C91.391 (4)
N2—O31.218 (3)C8—C121.490 (4)
N2—O21.218 (3)C9—C101.370 (4)
N2—C71.474 (3)C9—H9A0.9300
C2—C31.516 (4)C10—C111.512 (4)
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—C41.507 (4)C11—H11C0.9600
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
O4—C121.327 (3)C13—H13C0.9600
C4—N1—C5129.3 (2)C7—C6—C5118.9 (2)
C4—N1—H1A115.4C7—C6—H6A120.6
C5—N1—H1A115.4C5—C6—H6A120.6
C2—C1—H1B109.5C6—C7—C8123.3 (2)
C2—C1—H1C109.5C6—C7—N2115.7 (2)
H1B—C1—H1C109.5C8—C7—N2121.0 (2)
C2—C1—H1D109.5C7—C8—C9115.8 (2)
H1B—C1—H1D109.5C7—C8—C12122.1 (2)
H1C—C1—H1D109.5C9—C8—C12122.1 (2)
O3—N2—O2124.3 (2)C10—C9—C8123.4 (3)
O3—N2—C7117.5 (2)C10—C9—H9A118.3
O2—N2—C7118.1 (2)C8—C9—H9A118.3
C3—C2—C1112.0 (3)C9—C10—C5119.0 (2)
C3—C2—H2A109.2C9—C10—C11120.3 (2)
C1—C2—H2A109.2C5—C10—C11120.7 (2)
C3—C2—H2B109.2C10—C11—H11A109.5
C1—C2—H2B109.2C10—C11—H11B109.5
H2A—C2—H2B107.9H11A—C11—H11B109.5
C4—C3—C2113.6 (2)C10—C11—H11C109.5
C4—C3—H3A108.8H11A—C11—H11C109.5
C2—C3—H3A108.8H11B—C11—H11C109.5
C4—C3—H3B108.8O5—C12—O4123.6 (2)
C2—C3—H3B108.8O5—C12—C8124.7 (2)
H3A—C3—H3B107.7O4—C12—C8111.7 (2)
C12—O4—C13116.5 (2)O4—C13—H13A109.5
O1—C4—N1122.4 (3)O4—C13—H13B109.5
O1—C4—C3123.6 (3)H13A—C13—H13B109.5
N1—C4—C3114.0 (2)O4—C13—H13C109.5
C6—C5—N1122.0 (2)H13A—C13—H13C109.5
C6—C5—C10119.7 (2)H13B—C13—H13C109.5
N1—C5—C10118.3 (2)
C1—C2—C3—C4−178.2 (3)C6—C7—C8—C12−179.3 (3)
C5—N1—C4—O1−3.1 (5)N2—C7—C8—C12−1.3 (4)
C5—N1—C4—C3177.3 (3)C7—C8—C9—C10−1.1 (4)
C2—C3—C4—O11.4 (4)C12—C8—C9—C10179.5 (3)
C2—C3—C4—N1−179.1 (3)C8—C9—C10—C5−0.1 (5)
C4—N1—C5—C60.1 (5)C8—C9—C10—C11180.0 (3)
C4—N1—C5—C10179.8 (3)C6—C5—C10—C91.3 (4)
N1—C5—C6—C7178.5 (3)N1—C5—C10—C9−178.4 (3)
C10—C5—C6—C7−1.2 (4)C6—C5—C10—C11−178.8 (3)
C5—C6—C7—C8−0.1 (4)N1—C5—C10—C111.5 (4)
C5—C6—C7—N2−178.3 (2)C13—O4—C12—O51.0 (4)
O3—N2—C7—C6−75.9 (3)C13—O4—C12—C8179.9 (3)
O2—N2—C7—C6101.7 (3)C7—C8—C12—O5−13.9 (4)
O3—N2—C7—C8105.9 (3)C9—C8—C12—O5165.5 (3)
O2—N2—C7—C8−76.5 (3)C7—C8—C12—O4167.1 (3)
C6—C7—C8—C91.2 (4)C9—C8—C12—O4−13.5 (4)
N2—C7—C8—C9179.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.202.809 (3)122
C9—H9A···O40.932.412.734 (3)100
C13—H13A···O1i0.962.333.284 (4)174

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2408).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Boustany, C. M., Bharadwaj, K., Daugherty, A., Brown, D. R., Randall, D. C. & Cassis, L. A. (2004). Am. J. Physiol. Regul. Integr. Comp. Physiol.287, R943–R949. [PubMed]
  • Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270–1277. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Goossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev.4, 43–55. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci.9, 359–369. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ries, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wolfgang Wienen, W. & Hauel, N. H. (1993). J. Med. Chem.36, 4040–4051. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography